
Issue 15 - September 2020 - Multi-Agent Paradigm to Design the Next Generation of Airborne Platforms
	 AL15-03	 1

Artificial Intelligence and Decision Making

Multi-Agent Paradigm
to Design the Next Generation

of Airborne Platforms

Airborne platforms such as Remote Piloted Aircraft Systems (RPAS) operate
in highly critical contexts. The next generation of RPAS will be endowed with

multifunction sensors (i.e., each sensor offers a large panel of functions to the
platform's manager during the mission). As a platform, RPAS carry out a wide
collection of complex tasks, thanks to the interleaving of the various services of
sensors. The sensors are in charge of collecting data from the environment.
Our main goal is to design a system as a software medium layer
between the platform manager and the hardware resources on
board the airborne platform (i.e., multifunction sensors).
Today, the requirements of the platform in terms of autonomy, modularity,
robustness and reactivity, as well as the industrial constraints, call for
the design of a new multifunction system architecture. Such a design
may rely on a multi-agent paradigm since it is modular by nature and the
agents naturally bring autonomy and pro-activity to the system.
This paper presents new and original contributions: (1) an original agentification
of the system, in the form of a multi-agent architecture that captures the
dynamics of the environment by creating agents depending on objects that
may appear in the mission theater; (2) agents that generate a task plan
(a task is an action that will require a sensor to be achieved) according to the
resources (e.g., the sensors) needed; (3) a scheduler that handles the task
plans issued by the agents in order to provide efficient sensor scheduling.

A. El Fallah Seghrouchni
(Sorbonne Université)

L. Grivault
(Thales Defense Mission Systems)

E-mail: amal.elfallah@lip6.fr

DOI: 10.12762/2020.AL15-03

The context

Nowadays, airborne platforms are used worldwide for air superior-
ity, as a strategic asset during various kinds of operations, including
conflicts, surveillance and rescue. These operations occur in highly
dynamic environments with a low predictability under scenarios
combining up to a thousand entities. The involved entities all have
their own behaviors, speeds and trajectories. In this context, onboard
instruments (i.e., sensors) allow the platform, hence the mission
manager, to collect knowledge from the field.

Throughout the years, sensors have become complex systems,
multifunction, able to share data, communicate and, since recently,
collaborate. Sensors are all specific to various physical dimensions
(electromagnetic at different wavelengths, optics, infrared, etc.) and
different ranges (few meters to hundreds of kilometers, shallow to
wide angles, etc.). Due to this variety, collaboration between sensors

allows new data to de deduced concerning the environment by over-
lapping outputs coming from many sensors.

The sensor scopes and ranges are not limitless, the function set is
expanding, and with a maximum of about a thousand entities in the
field, the global sensor capacity is the main limit for the enhancement
of the MSS.

As a result of sensor limits in terms of range and scopes, the plat-
form's localization is one of the main requisites for sensor efficiency.
This requirement implies that the MSS has to be fully aware of the
platform trajectory and speed.

Due to the criticality of the context and the mission's objectives, opera-
tors are expecting a certain determinism from the decisions proposed

Issue 15 - September 2020 - Multi-Agent Paradigm to Design the Next Generation of Airborne Platforms
	 AL15-03	 2

by the MSS. The MSS will be following clearly defined rules specifying
sensor actions and which tasks will be accepted by the scheduler.

The evolution of battlefields due to many factors, including new tech-
nologies and conflict transformation, leads to emerging needs [4].
These needs directly affect the development of airborne platforms and
thus of Multi-Sensor Systems (MSS). On the one hand, new operat-
ing conditions entail the use of autonomous platforms with advanced
flexibility and multirole capabilities [9]. On the other hand, the rapid
evolution of the technologies together with the cost reduction objec-
tive are leading industries to develop more reliable and durable sys-
tems [2]. Sensors carried by RPAS are now able to perform a large
panel of functions, such as image acquisition, spectrum analysis, and
object tracking [5]. All of these sensors play a major role in operation
and their optimization has become essential.

In this article, we will study the management of resources onboard
Remote Piloted Aircraft Systems (RPAS). Our approach is aimed at
designing a suitable architecture to deal with resources; i.e., various
sensors in our target application. We adopt the multi-agent paradigm by
using an agent-based architecture for the multi-sensor and multi-function
system. This review presents new and original contributions: (1) a multi-
agent architecture that captures the environment dynamics by creating
agents watching the mission theater, which corresponds to an original
agentification of the system; (2) each agent generates a task plan accord-
ing to the resources that it needs, namely the sensors; (3) our scheduler,
which handles the task plans issued by the agents in order to provide
efficient sensor scheduling. The coordination of the sensors is then sup-
ported by a scheduling mechanism, in order to satisfy the requirements
of the mission and the platform in a hardly-constrained environment.

Our paper goes on to present a realistic scenario and shows, through
simulations, how the multi-agent system evolves and how our sched-
uler manages the agents' task plans in a realistic mission theater.

This paper is organized as follows: Section 2 briefly presents the
multi-agent paradigm and related work, and emphasizes the original-
ity of our contributions. Section 3 presents our framework, including
the multi-agent architecture that we propose for the design of the next
generation of airborne platforms; Section 4 details the scheduling
mechanism; Section 5 provides our experimental results based on the
scenario given by our industrial partner. Finally, Section 6 concludes
this paper and presents our perspectives.

Related Work

In artificial intelligence, an intelligent agent (IA) refers to an autono-
mous and goal driven entity called agent that acts in order to achieve
goals. An agent is usually embedded in an environment that can per-
ceive through sensors and modify consequent actuators. It may be
simple (such as a reactive agent) or complex (such as a BDI agent,
or cognitive agent) depending on the modelling requirements. In all
cases, intelligent agents may be endowed with skills to achieve their
goals. Cognitive agents may use knowledge and intelligent skills, such
as methodic, functional, procedural approaches, algorithmic search
or reinforcement learning. A multi-agent system (MAS) is composed
of an organization of multiple interacting intelligent agents. A multi-
agent paradigm can solve problems that are difficult or impossible for
an individual agent or a monolithic system to solve [11].

Agent-based online architectures are currently used within the Air
Traffic Controllers (ATC) [7,1] of many Airports. These agent ATC
architectures demonstrated the advantages brought by agents in
terms of autonomy. The objectives of ATC are to control the traffic
in geographical areas [10]. This task is usually done by a human
operator, who can be potentially overburdened depending on area
attendance [3]. In this context, agents can be used to follow the loca-
tion of aircraft in a geographical area, and assist/alert the operator in
various situations.

In ATC, agents are mainly used as secondary operators assisting the
main system's user with automatic treatment, freeing the operator
from some of the workload. ATCs have many constraints in common
with a MSS, especially complex visualization of the field, data over-
loads, high criticality and low delays.

The fundamental difference between ATC and MSS lies in the pres-
ence of the sensors. Sensors in this kind of airborne platforms are
highly complex instruments, continuously expecting precise requests
to work (time, orientation, duration, power, movement tracking, etc.).
Furthermore, all requests, treatments and products should be pro-
cessed in a real-time manner, leading to highly responsive and predic-
tive sensor behaviors.

Driving sensors through a multi-agent system has been studied
previously in the context of sensor-mission assignment [6]. In this
previous architecture, sensors were agentified and shared missions,
which were given by a mission manager. In our system, the MSS
also generates sensor plans by analyzing the data coming from the
field and making sensor plans in consequence. This feature leads the
MSS to support low-level sensor requirements, as well as high-level
autonomy goals simultaneously.

From a scheduling point of view, our scheduler manages task plans
(tasks are complex actions that require resources such as sensors to
be achieved) that are feasible within a particular time window. Each
task is specified by precedence and duration constraints. The plans
are weighted by an operationally determined priority coefficient, and
the industrial need requires mainly this coefficient to be taken as
input. In our architecture, the objective is not to balance the use of
resources, since each task is dedicated to one precise resource, but
rather to have all priority plans scheduled at the end of the schedul-
ing process. This approach is quite different from those described in
the scheduling literature, which is mainly centered on sharing divis-
ible tasks with dynamic priority, in order to distribute them among
resources in an optimized way.

The MSS framework

At first sight, the MSS acts as an interface between the Mission
Manager and the sensors' aperture set. The MSS helps to provide
high-autonomy features, as well as an accurate control of sensors
and efficient use of limited available resources (sensor apertures,
power, cooling, computing power, etc.) [2]. To build this MSS, we
will resort to a multi-agent architecture since the agents are suit-
able for bringing the flexibility and the autonomy required by the
MSS. The following section will describe our proposed architecture,
given in the figure, as well as the inputs and outputs of our MSS
architecture.

Issue 15 - September 2020 - Multi-Agent Paradigm to Design the Next Generation of Airborne Platforms
	 AL15-03	 3

MSS Architecture description

High-Level Orders and Policies

Policies and high-level orders are the only commands available to the
operator for regulating the MSS behavior. They are sent dynamically
(according to the changes that may occur during the flight) to the
Mission Manager for effective control of the airborne platform.

High-level orders are defined as objectives to be achieved by the mis-
sion as a whole, while the policies are defined as a set of rules to be
followed by the MSS. Policies impact the behavior of the multi-agent
system that implements the MSS, and thus act at various levels. This
may imply some restrictions on the sensors, or on the autonomy of
the agents' behavior. Indeed, the policies are transmitted to every
agent when updated by the mission manager.

Knowledge Base

The knowledge base gathers all knowledge needed by the MSS agents
to plan for the use of required sensors. These data specify the generic
characteristics of the field objects, the generic agents' behaviors and data
acquisition procedures on the high-level decision side. On the low-level
side, available knowledge is about sensor delays, scope specifications,
speed requirements, running times and all kinds of data required for the
evaluation of sensor operations. They are loaded offline to the MSS.

Platform Data

The platform's data communication provides all essential data for high
and low level decisions. In fact, the air temperature, platform altitude,
speed, position or even weather are required data to plan sensor opera-
tions, since they affect sensor operations. Since the current platform
position is needed for real-time sensor requests, upcoming positions are
also required in order to plan next sensor actions. For this reason, the
platform flight plan is available to the MSS. This flight plan is dynamic
and can be adapted by the operator during the mission; however, the
actual position can differ from it; e.g., in case of an unplanned maneuver.

Global Scheduler

The global scheduler receives all of the plans from the agents, to
schedule them accurately on sensor timelines. Due to the number
of objects present in the field (i.e., a large number of agents in the
architecture), the scheduling is an important process in our system.

Resource Managers

When one of the resource managers receives the plan produced by
the scheduler, the resource accurately plays the content of its timeline
as specified in the global plan. The manager reads all of the timeline
tasks present and, in the case of material resources, sends the cor-
responding orders to the sensors.

The Track Merger

After the sensors have accomplished their tasks, the results are sent
to the track merger. The track merger merges all data coming from
sensors and delivering data to the agents. The merging is a complex
operation, due to the scattered data recovered from the field. The par-
tial observation of the field leads to a lack of object data continuity.

MSS Outputs

This architecture assists the Mission Manager during decision mak-
ing, so the purpose of the MSS is to share all of the data gathered
by the sensors. The MSS and the Mission Manager are both coun-
terparts exchanging information about the tactical situation (i.e., the
theater's body of knowledge). In addition, the Mission Manager is able
to control the MSS manually during operation and to bypass the MSS'
decisions.

Closed Loop Sensor Control

This four-step process of planning, scheduling, sensing and merging
operations constitutes a fast sensor closed control loop.

Between high-level decisions and sensor management, agents play
an important role in the MSS architecture.

Agent Design

Agents have a unique objective: to collect as much data as possible
about field objects through the use of sensors in order to fulfill high-
level orders. To achieve its goal, an agent will try to select and execute
one of the available functions on the NGAP. In practice, a function
will rely on a pre-compiled task plan while the local scheduler is in
charge of time instantiation (tasks durations, deadlines, etc.). In our
framework, each task is associated with a resource and sensors are
assimilated to material resources.

Agents are equipped with communication modules, memory and a
core. They have a double role: creating high-level sensor objectives
and generating sensors plans.

To increase the architecture's potential, we consider three classes of
resource: a) sensors (e.g., an antenna); b) any type of equipment that
can be reserved for the functioning of the sensors (e.g., an image
processing unit); and c) any physical magnitude necessary for the
proper functioning of the sensors (e.g., frequency).

This allows the agents to make task plans involving sensors, as well as
the resources needed by sensors. This classification of resources has
proved to be useful for the exclusive use of sensors when they need
access to the same non-material or material resource. With this classi-
fication, the task dependencies are reduced, and the allocation process
is faster due to fewer exchanges between the scheduler and the agents.

In our architecture, all of the resources are considered as artifacts [8].
In this context, an agent has a double role: creating high-level sensor
objectives and generating, for a given function, a feasible task plan
with an accurate allocation of resources.

Communication features are needed for exchanging data with an
agent's environment while the memory feature provides necessary
variables for the agent's operations and rational behavior. The core
is hosting all running algorithms supported by the two previous fea-
tures, in order to exchange and to store computed data.

An agent has in its memory a map of all variables standing for real objects,
such as speed, altitude, position, attitude and vital signs. This map is empty
at the creation of the agent, and is filled over time with collected data, to be
aggregated in order to provide knowledge about objects.

Issue 15 - September 2020 - Multi-Agent Paradigm to Design the Next Generation of Airborne Platforms
	 AL15-03	 4

Two main processes are at the core of the decision of the agent and
determine which, how and when sensor functions should be acti-
vated.

The first main process determines which high-level functions (i.e.,
operational functions) should be achieved in order to acquire data.

For this purpose, groups of algorithms need many inputs, such as
platform data, operational knowledge (e.g., rules of actions depend-
ing on object characteristics), group orders, policies, agent orders,
and specific field object variables.

The second main process considers the previous result and evalu-
ates the precise timing of function execution. Firstly, it considers the
sensor knowledge suitable for the function, such as sensor scopes,
resource needs, timing constraints, etc.

Then, the global platform context, such as the flight plan, tempera-
tures, weather and all platform variables likely to influence the sen-
sors' work. Finally, all of these data modify the chosen function to a
specific sensor plan placed along the platform's trajectory.

Feedback between these two processes is important to prevent the
unfeasibility of the high-level function. In fact, the agent's main ben-
efit is autonomy. This benefit is also brought by the adaptability of
decisions taken by agents and the ability that it has to propose new
solutions if a particular sensor is not available (sensor failure, weather
incompatibility or other sensor conflict).

Agents roles

Agents are generic when created, meaning that they are all able to
instantiate various available task plans at the system birth. Agents
become specialized along the platform flight after receiving field data.
It should be specified that the MSS can detect an object without
knowing either what kind of object it is or the object's position.

Therefore, it should also be specified that not all sensors can be used
with all kinds of object. If the agent is not specified because of a weak
data feed, available functions for this agent would refer to a very large
set of sensors. The connection between the agents and field objects
brings many advantages:

•	 A natural virtual embedded vision of the field with a network of
active objects.

•	 Easy access to behavior analysis and learning functions when
faced with in-field unexpected events.

•	 Strong modularity of development.
•	 High autonomy of the MSS provided by the agents' proactive-

ness.
•	 Easy modeling of an open system, with objects that appear or

disappear dynamically.
•	 A first step for a fully decentralized tactical situation architecture.

From the operational point of view, all field objects possess a spe-
cific degree of interest for sensors. For instance, a highly critical or
dangerous object in the field would naturally lead to a proportional
use of sensors to gather knowledge about this object. The closed
control loop achieves this autonomy objective with the implication
of agents.

Scheduling

MSS Efficiency

The efficiency of the MSS relies on the consistency of achieved tasks
according to environment parameters:

•	 Events from the field (e.g., weather changes).
•	 Platform condition (e.g., platform speed and attitude).
•	 MSS state (e.g., sensor failure).
•	 Field object behaviors (e.g., an object's appearance or attitude

changes).
•	 Operator instructions (e.g., specific operating policies given by

different operators).

The highest efficiency is reached if the MSS has collected the maxi-
mum volume of significant information about the field with regard to
all of the previous parameters.

The great number of objects present in the field implies a large quan-
tity of sensor plans created by the agents. Many of these plans can
be insignificant from an operational point of view. As an example, we
can imagine a scenario in which the platform is tracking an important
object in the field through the radar sensor; the importance of the
object implies a high level of priority.

For instance, if the platform is approaching a highway used by 300
vehicles with low operational interest, agents will send sensor plans
corresponding to an identification procedure.

After sorting by priority order, not all of the requests will be achievable
by the same sensor. A part of these would be achieved by another
one (e.g., a camera sensor) while the other part would be simply
unachieved. Despite a partial realization of agent requests, the result-
ing efficiency is optimal in the given situation.

The determination of the agents' priority level is an important point of
the scheduling consistency.

Task plan

Year after year, the number of functions (e.g., take a picture or listen
to signals on M-band) achievable by an MSS has multiplied. Today,
sensors allow many different functions to be carried out. Each func-
tion is achieved through a specific task plan.

A task is an indivisible action achieved by a resource. A task can be
identified as kT , of duration kD and scheduled on the timeline of a
resource jr . The task starts at st and finishes at s kt D+ .

Resources'
timelines

time

jr

1r

nTask

nD

s nt D+st

Figure 1 – A task and its parameters

Issue 15 - September 2020 - Multi-Agent Paradigm to Design the Next Generation of Airborne Platforms
	 AL15-03	 5

A task plan is an ordered set of tasks to achieve a sensor function
(e.g., Take a picture requires the use of two resources: An optical
camera and an optical image-processing unit).

Figure 2 represents a plan composed of three tasks, each needing a dis-
tinct resource. This figure shows the asynchronous and indivisible features
of resource occupations. In fact, Tasks 1 and 2 start and end at the same
time, while Task 3 starts before the previous tasks end. The resources are
fully allocated during the tasks. The plan weight is determined by agents
and reflects the importance of executing the plan at an operational level.

Plan tasks and tasks directly inherit the agent's priority.

Plan kP is defined such that { }, , , ,k r dP T T C Tα= , where α is the
plan's priority, rT is the release time of the plan, dT is the plan's
execution deadline and C is the set of constraints that specifies the
order of the set of tasks { }1 2 3, ,kT T T T= .

Scheduler

The scheduler takes as input the plans issued by the agents and the
plans already scheduled on the timelines, as well as their priorities,
and defines a global schedule. After sorting all of the plans by prior-
ity, the scheduler's algorithm calculates the start time for each task
contained in the plans.

The result is a global schedule constituted of interleaved tasks. This
scheduling is achieved for a temporal horizon HT .

The plans that were not accepted within the temporal horizon are not
scheduled and will be processed later when the average priority of all of
the plans will be lower. If a plan is not scheduled, the agent is advised
about the failure and is able to submit a new plan on less busy resources.

Given that our algorithm schedules plans one by one, and the industrial
context requires the plans with the highest priority to be scheduled despite
the low-priority plans, the plans of highest priority are scheduled first.

The scheduling can be based on highest priority first plan insertion through
starting date computation, with the possibility of ordering plans if needed.

Experimental Results

Scenario

Since testing in real situations is complex and very expensive to be
achieved with this kind of platform and MSS, we implemented this archi-
tecture and its environment in simulation. Hence, we developed a special
test scenario, able to show the main decisions that an operator takes
during a mission. This scenario gathers up to 10 steps where the platform
is deployed in various different contexts with different criticality. Thanks to
this scenario, we can now evaluate the behavior and the decisions taken
by our MSS architecture by simulation in realistic situations.

Figure 4 shows the visualization of the main window of the simulation
engine.

The bottom frame represents functions and resources available in
the MSS. Framed resources and functions are currently working and

Figure 3 – Resulting global scheduling

TST

Obj

RPAS

Figure 4 – Visualization of the simulator's main frames

Plan k

kP Start kP End

kP / Task 3

kP / Task 2

kP / Task 1

timeResources'
timelines

1r

2r

3r
rt dt

Figure 2 – A task plan involving three resources

Issue 15 - September 2020 - Multi-Agent Paradigm to Design the Next Generation of Airborne Platforms
	 AL15-03	 6

unframed ones are not. The links between functions depict the func-
tions' dependencies on the sensors.

At this step of the scenario, the watch mode of the RPAS, which was
enabled at the power-on of the MSS, has planned and executed the use of
an electromagnetic detector. It detected the presence of a radar ("Obj" in
the figure), and is heading towards the emitting object to obtain more data
about it. As in reality, the MSS is not managing the platform attitude (nor
deciding the platform maneuvers or controlling RPAS surfaces), but the
Mission Manager is deciding to go toward the object after the MSS shared
data received and proposed an identification procedure (proposition emit-
ted by the corresponding agent) at that point. The detection of this object
led to the activation of various other sensors. The cone around the RPAS
is the visualization of an optical sensor (i.e., camera) turning around the
platform. This sensor was also activated by the watch function.

After many tasks, an objective is given to the platform: "seek the
object TST" (i.e., Time Sensitive Target) in a particular area. After 2
minutes and many achieved tasks, the TST was found as expected
without human control over the MSS' sensors.

Some functions were implemented to enhance the robustness of the
MSS, including agent death and replication to avoid blocked agent
issues by detecting and killing blocked agents and creating a new
agent with the data backup from the previous one.

The MSS' global behavior matched our expectations during simula-
tions and sensor tasks were scheduled in time and consistently with
regard to the simulated field. The modularity of the MSS is improved
by this architecture and the agent nature allows the architecture's
characteristics to be specified block by block.

With regard to the system autonomy, the simulation showed the abil-
ity that the MSS has for managing high-level objectives depending
on its own observations, without any intervention from the operator.

The previous states of the visible tactical situation were accomplished
in a fully automated way with no human manipulation. All of the nec-
essary data were embedded in the algorithms, plan descriptions and
tactical rules, like for a real platform during flight preparation. The simu-
lation started with the creation of the RPAS agent, which is a particular
derivation of the agent class. The RPAS goal is to build plans able to
collect data from the field in order to detect objects. Once the RPAS was

created, many watching plans were built and sent to the scheduler. The
sensors worked according to the plans and the produced data were
sent to the track merger, responsible for agent creation.

After many tasks, an objective was given to the platform: "seek the
object TST" (i.e., Time Sensitive Target) in a particular area. After
a while and many sensors tasks, the TST was found as expected
without human control over the MSS' sensors.

Some functions were implemented to enhance the robustness of the MSS,
including agent death and replication to avoid agent-blocking situations.

The MSS' global behavior matched our expectations during simula-
tions and sensor tasks were correctly scheduled. Work should be
done to refine choice models concerning agent plans, sensor behav-
iors, and object behaviors. However, the modularity of the MSS is
improved by this architecture and the agent nature allows architecture
characteristics to be specified block by block.

With regard to the system autonomy, the simulation showed the abil-
ity that the MSS has for managing high-level objectives depending
on its own observations, without any interventions from the operator
other than specifying policies.

Experimentation

Agents submitted 100 plans to the global scheduler (each agent has
a local scheduler that generates pre-compiled plans). As done by our
algorithm, the scheduling results are given in Figure 5 and Figure 6.

Figure 5 shows that the number of scheduled plans increases with the
size of the temporal horizon. In our simulation, whatever the priority of the
plan, its deadline coincides with the temporal horizon. If the plans are quite
temporally constrained, then giving the scheduler more time is not useful to
increase the number of scheduled plans. It also shows that the scheduling
time depends on the temporal horizon. The larger the horizon is, the less
reactive the scheduler is. From an operational point of view, a scheduling
time above 660ms is not acceptable: the temporal horizon should be under
120s to keep the scheduling time under 100ms, depending on the mission.

Figure 6 shows that the plans with the highest priority are scheduled
as soon as possible, even in a narrow window (temporal horizon).

Number of
scheduled plans

Scheduling time in ms

Window Width (s)

Sc
he

du
lin

g
Ti

m
e

(m
s)

Nu
m

be
r o

f S
ch

ed
ul

ed
 P

la
ns

 (p
la

ns
)

3740
3520
330

3080
2860
2640
2420
2200
1980
1760
1540
1320
1100
880
660
440
220

96
90
84
78
72
66
60
54
48
42
36
30
24
18
12
6
0

0 5500 11000 16500 22000 27500 33000 38500

Figure 5 – Number of scheduled plans and scheduling time depending on the
temporal horizon.

Average Priority of Scheduled Plans (priority)

Average priority of all plans

Av
er

ag
e

Pr
io

rit
y

of
 S

ch
ed

ul
ed

 P
la

ns
 (p

rio
rit

y)

8.5
8.4
8.3
8.2
8.1

8
7.9
7.8
7.7
7.6
7.5
7.4
7.3
7.2
7.1

7
6.9
6.8

0 5500 11000 16500 22000 27500 33000 38500

Window Width (s)

Figure 6 – Average priority of scheduled plans depending on temporal horizon.

Issue 15 - September 2020 - Multi-Agent Paradigm to Design the Next Generation of Airborne Platforms
	 AL15-03	 7

In addition, the average priority of the scheduled plans converges to
the average priority of all of the plans.

The operational requirements are met by the scheduling that we pro-
pose, since most of the time the MSS faces situations that require
short-time scheduling with few plans having high priorities.

In this dynamic instantiation of the scheduler, the global schedule is
redefined each time a plan with a priority higher than the lowest prior-
ity of the scheduled plans is received from agents. To avoid started
plans being stopped before they are finished, they are isolated from
the schedule queue. Started plans are stopped only if higher priority
plans cannot successfully be scheduled because of their time window
constraints (i.e., release/deadline times).

Conclusion

Our study is aimed at dealing with new scheduling problems in the context
of RPAS. We are interested in the scheduling of task plans instead of the
classical scheduling of tasks. This implies several differences with exist-
ing algorithms. For instance, removing an unfeasible task plan releases a
set of resources, which strongly affects the ongoing scheduling.

We also have to deal with a flow of requests from the agents. This can
be roughly viewed as online scheduling, but at this stage we have no
information about the probabilities of agent requests.

From the architecture point of view, our design of a multi-agent system
allows dynamic and open theaters to be considered. The dynamics
of the architecture, its flexibility and the first results of our scheduling
mechanism provide a promising solution for the next generation of
airborne platforms. Indeed, the multifunction and multi-sensor fea-
tures of this platform are fully exploited by the multi-agent system.

The closed loop sensor functions and resource allocation control by
agents is a first breakthrough concerning agent-based online archi-
tectures for strongly constrained systems like MSS.

The results provided by the simulation gave us a first proof of concept
concerning the architecture. The general behavior of the simulated
MSS, the agents' planning abilities, and the general flexibility of imple-
mentation met our expectations.

The various different software blocks are henceforth welcoming inno-
vative algorithms concerning tactical situation forecasting, improved
track merging, collaborative agents, refined scheduling, and enhanced
communication protocols.

These future algorithm developments will have an important role in
the architecture efficiency and sustainability. Scheduling is one of the
main algorithms affecting the MSS overall consistency and will be the
topic of upcoming research.

A modular software architecture for autonomous and optimized sen-
sor driving has been presented. However, this approach does not
propose any hardware architecture. Since the final MSS capabilities
and modularity also depend on the supporting hardware and its dis-
tribution within the platform, special attention should be paid during
its designing task to appreciate all of the features provided by the
architecture.

Finally, the architecture may be potentially adapted to less constraining
platforms like underwater vehicles, piloted aircraft, or land vehicles.

Perspectives are various, ranging from the improvement of the sched-
uling by using a learning approach in order to anticipate the law of
arrival of demands from the agents, to the decentralization of the
architecture and multi-platform cooperation 

References

[1]	 T. J. Callantine - CATS-based Air Traffic Controller Agents. San Jose State University, 2002.

[2]	 L. Chabod, P. Galaup - Shared Resources for Airborne Multifunction Sensor Systems. IET International Conference on Radar Systems, 2014.

[3]	 Y. Ibrahim, P. Higgins, P. Bruce - Evaluation of a Collision Avoidance Display to Support Pilots' Mental Workload in a Free Flight Environment. IEEE
International Conference on Industrial Engineering and Engineering Management, 2013.

[4]	 S. Kemkemian, M. Nouvel, P. Cornic, P. Le Bihan, P. Garrec - Radar Systems for Sense and Avoid on UAV. International Radar Conference, October 2009.

[5]	 S. Kemkemian, M. Nouvel-Fiani - Toward Common Radar & EW Multifunction Active Arrays. IEEE International Symposium on Phased Array Systems
and Technology. 77784, 2010.

[6]	 T. Le, T. J. Norman, W. Vasconcelos - Agent-Based Sensor-Mission Assignment for Tasks Sharing Assets. IFAAMA, 2009.

[7]	 M. Nguyen-Duc, Z. Guessoum, O. Marin, J.-F. Perrot, J.-P. Briot - A Multi-Agent Approach to Reliable Air Traffic Control. International Symposium
on Agent Based Modeling and Simulation, Vienna, Austria, 2008.

[8]	 A. Omicini, A. Ricci, M. Viroli - Agens Faber: Toward a Theory of Artefacts for MAS. Electronic Notes in Theoretical Computer Science 150 (3): 21–36,
May 2006.

[9]	 A. Schulte, D. Donath, F. Honecker - Human-System Interaction Analysis for Military Pilot Activity and Mental Workload Determination. IEEE
International Conference on Systems, Man, and Cybernetics, 2015.

[10]	 K. Tumer, A. Agogino - Distributed Agent-Based Air Traffic Flow Management. The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent
Systems, AAMAS, 2007.

[11]	 R. H. Bordini, A. El Fallah Seghrouchni, K. Hindriks, B. Logan, A. Ricci - Agent Programming in the Cognitive Era. JAAMAS (Autonomous
Agents and Multi-Agent Systems) volume 34, Article number: 37 (October 2020). https://doi.org/10.1007/s10458-020-09453-y.

Issue 15 - September 2020 - Multi-Agent Paradigm to Design the Next Generation of Airborne Platforms
	 AL15-03	 8

AUTHORS

Amal El Fallah Seghrouchni (is a Full Professor at Sorbonne
University – Faculty of Science and Engineering, and is cur-
rently on leave from the CNRS. She is a researcher assigned to
the LIP6, and she leads the Multi-Agent Systems Group and
co-leads the Artificial Intelligence and Data Science line of re-

search (covering human and machine learning, deep learning, automatic de-
cision-making, intelligent agents and multi-agent systems, etc.). Amal El Fal-
lah Seghrouchni is also a member of the COMEST (World Commission on the
Ethics of Scientific Knowledge and Technology) of UNESCO (2020 -2023)
and Holder of the Chair of Excellence "Design of hybrid, cognitive and col-
laborative AI systems" – Sorbonne University / Thales (2020 – 2024).

Her research focuses on Artificial Intelligence, including the Design of Au-
tonomous Systems and Ambient Intelligent Applications. She is develop-
ing an approach based on cognitive agents and multi-agent systems. This
includes coordination models (negotiation, distributed planning, interaction
protocols), and the spatial-temporal design of contextual systems based on
adaptation, individual and collective learning, and human-artefact interac-
tion. Her research themes find a large number of applications in the fields of
complex system design (e.g., drones of the future), simulation (e.g., urban),
contextual applications and smart cities (e.g., intelligent assistants). These
applications and topics are supported by a large number of industrial partner-
ships and international collaborations.

Amal El Fallah Seghrouchni has also held a number of scientific posts in lead-
ing international organizations (e.g., General Chair at AAMAS 2020, Track
Chair at AAMAS 2019, Track Chair at IJCAI 2019, Chair of the APIA 2019 Pro-
gram Committee and of the APIA 2020 Program Committee, member elected
to the IFAAMAS and EURAMAS boards, etc.). She has also led the research
work of more than 30 doctoral students and has published numerous books
and articles in the best conferences on Artificial Intelligence and Multi-Agent
Systems (for more details, see http: //www-poleia.lip6.fr/elfallah~/).

Ludovic Grivault is a Doctor Engineer working for Thales De-
fense Mission Systems – He obtained his PhD in December
2018 under the supervision of Professor Amal El Fallah
Seghrouchini at Sorbonne University – Faculty of Science and
Engineering. His thesis topic was "Architecture multi-agent

pour la conception et l'ordonnancement de systèmes multi-senseur em-
barqués sur plateformes aéroportées". His research focuses on embedded
systems and artificial intelligence, more specifically on complex system ar-
chitectures, multi-agent technologies, scheduling and airborne sensors.

