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A revisited quadrotor model is proposed, including the so-called rotor drag. It differs 
from the model usually considered, even at first order, and much better explains 

the role of accelerometer feedback in control algorithms. The theoretical derivation is 
supported by experimental data.

Introduction

Quadrotor control has been an active area of investigation for several 
years. On the one hand, the quadrotor has several qualities, among 
them its very simple mechanical design, and qualifies as a viable con-
cept of mini Unmanned Aerial Vehicle (UAV) for real-life missions ; on 
the other hand, it is perceived in the control community as a very rich 
case study in theoretical and applied control. The first control objec-
tive is to ensure a stable flight at moderate velocities and, in particular, 
in hovering; this fundamental building block is then used to develop 
higher-level tasks.

However, for experiments designed to work only in the lab with an 
off-board measuring device, e.g. [1], quadrotors all rely at the heart 
on strapdown MEMS inertial sensors (gyroscopes and accelerom-
eters). These inertial sensors may be used alone (as far as horizontal 
stabilization is concerned) [2], or supplemented by other sensors, 
which usually provide some position-related information. Representa-
tive designs are: ultrasonic rangers [3]; (simple) GPS module when 
outdoors and infrared rangers when indoors [4] ; carrier phase differ-
ential GPS [5]; laser rangefinder [6]; vision system [7], [8], [9] ; laser 
rangefinder and vision system [10], [11]. Unfortunately those extra 
sensors have inherent drawbacks (low bandwidth, possible tempo-
rary unavailability, etc.), hence inertial sensors remain essential for 
basic stabilization.

Nearly all of the papers in the literature rely on the same physical 
model: only aerodynamic forces and moments proportional to the 
square of the propeller angular velocities are explicitly taken into 
account. Other aerodynamic effects are omitted and considered as 
small non-modeled disturbances to be rejected by the control law. 
The reason put forward is that these effects are proportional to the 
square of the quadrotor linear velocity, hence very small near hover-
ing. Few authors explicitly consider other aerodynamic effects : [12] 

notes the importance of flapping stability derivatives; [13] and [14] 
consider aerodynamic effects without physical motivation linear with 
respect to the quadrotor linear and angular velocities, but propose 
very small numerical values; [5] judges them to be negligible at low 
velocities, and focuses on nonlinear aspects at moderate velocities; 
[15] physically motivates the presence of effects that are nearly linear 
with respect to the quadrotor linear and angular velocities, but pro-
vides no experimental data and is concerned only with the open-loop 
system.

Figure 1 -  Our home-built quadrotor : the “Quadricopter”

On the other hand, the accelerometer measurement vector a  can be 
used in two different ways (gyros are used in both cases ; see page 4 
for more details about inertial sensors):

1) as an input, directly in the equation V g a= +


 

  if extra sensors pro-
viding position or velocity information are available, using a sensor fu-
sion algorithm that estimates the velocity and the pitch and roll angles
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2) as an output, through the approximation a g≈ −
 

. Accordingly, 
the pitch and roll angles are estimated by a sensor fusion algorithm. 
Commercial “attitude sensors”, such as the 3DM-GX1 or the MTi2, run 
exactly on this principle.

In both cases, the sensor fusion algorithm can be an Extended Kalman 
Filter (EKF), a complementary filter, linear or nonlinear, or a nonlinear 
observer; see for example [16], [17] for an account of the two cases. 
Recall that MEMS inertial sensors are not accurate enough for "true" 
Schuler-based inertial navigation, see for example [18, Chap. 5] for 
details. 

Now, a puzzling issue arises: the "conventional" physical model im-
plies that the longitudinal and lateral (in body axes) accelerometers 
should always measure zero, which clearly contradicts 2) ; as for 
1), even if no particular form of the accelerometers measurements is 
assumed, one may wonder about the interest of using measurements 
known to be zero (in addition corrupted by noise and biases). Never-
theless, many successful quadrotor flights have been reported, with 
control laws based on 1) or 2), or even both, and there is no question 
that using accelerometers is beneficial.

This paper, which largely draws on [19], proposes a "revisited" 
model containing extra aerodynamic terms proportional to the propel-
ler angular velocity times the quadrotor linear or angular velocity. In 
particular, the so-called rotor drag, though rather small, appears at 
first order and is essential to correctly account for the accelerometer 
measurements.

The paper is structured as follows: the revisited model is derived in 
next section ; its main features are experimentally validated then ; 
finally, its implications for control schemes are discussed.

A revisited quadrotor model

Model of a single propeller “near” hovering

We first consider a single propeller rotating with angular velocity i iε ω  
around its axis b ik ; ω  is positive, with 1=1ε  (resp. -1) for coun-
terclockwise (resp. clockwise) rotation. Due to the motion of the 
quadrotor, the geometric center 1A  of the propeller moves with lin-
ear velocity 

iAV


, while the rotor plane (by definition perpendicular to 
bk


) undergoes angular velocity ;Ω




 the total angular velocity of the 
propeller is thus 1 i b+ \kε ωΩ



. A lengthy derivation in the spirit of for 
example [20, in particular Chap. 5] shows that the aerodynamic ef-
forts on the propeller resolve into the force iF



 and moment iM


at iA ,

2
ii i b i 1 A 2 bF = a k (  V + ×k )ω ω λ λ⊥− − Ω

 
  

                      
ii i 3 A b 4( V ×k + )ε ω λ λ ⊥− Ω


 

		                (1)

2
i ii i b i i 1 A 2 bM = b k S ( V + k )ε ω ε ω µ µ⊥− − Ω×
 

  

                        1 i3 A b 4( V k + )ω µ µ ⊥− × Ω


 

	               	              (2)

where a,b, the i sλ ′  and ,
i

µ s are positive constants ; the projection of 
a vector U



 on the rotor plane is denoted by

( ) ( )·b b b bU k U k U U k k⊥ = × × = −
   

   

Moreover 2λ and 2µ are very small (they would be exactly zero if the 
blade axis were orthogonal to bk



). Notice that all of the force and 
moment terms orthogonal to bk



 arise from the velocity imbalance of 
the blade on a complete turn (because of the translational motion, the 
blade moves faster with respect to free air when it is advancing than 
when it is retreating).

The above relations rely on classical blade element theory, with two 
extra assumptions:

•	 the propeller is considered to be perfectly rigid, which is approxi-
mately true for most quadrotor propellers. The flapping due to 
the slight flexibility of a real propeller has only a marginal effect ;

•	 the components of the linear velocity 
iAV


 are considered small 
with respect to the propeller tip speed ; similarly the components 
of the angular velocity Ω



are considered to be small with respect 
to iω . This is valid "near" hovering, i.e., for "small" 

iAV


 and Ω


: 
typically, the tip speed is of about 150 .m s− , so that 110 .m s− can 
still be seen as a "small" velocity.

The velocities in the previous equations are of course velocities with 
respect to the air stream, not with respect to the ground. They coin-
cide when there is no wind, which we assume in the sequel.

The term 1 ii AVλω ⊥  in (1) is often called H -force or rotor drag in the 
helicopter literature. Also notice that the simplified expressions (1)-
(2), though directly based on textbook helicopter aerodynamics, do 
not seem to appear in the literature under this compact form, very 
handy for control purposes. The reason for this is probably that heli-
copter literature is primarily concerned with articulated and/or rather 
flexible propellers, operating moreover at much higher ratios of linear 
velocity to propeller tip speed.

Figure 2 - Sketch of the complete quadrotor

Complete quadrotor model  

The quadrotor consists of a rigid frame with four propellers, (directly) 
driven by electric motors, see figure 2. The structure is symmetrically 

1 www.microstrain.com
2 www.xsens.com
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arranged, with one pair of facing propellers rotating clockwise and 
the other pair rotating counterclockwise. The four propellers have the 
same axis bk



.

3 1

3 1
b

A A
A A

i =



 





, 4 2

4 2
b

A A
A

j
A

=


 




 and bk



 thus form a direct coordinate frame. 

Let A  be the geometric center of the 1A's  and 3 1 2 4
1 1 ;
2 2

l A A A A= =
 

 

clearly, 4
1 ii
AA =0.

=∑


 

The whole systemB, with mass m and center of mass C, thus 
involves five rigid bodies : the frame/stator assembly 0B  and the 
four propeller/motor assemblies iB . Clearly bkCA h=

 

 for some 
(signed) length h; notice that for most quadrotor designs h  is very 
small. Resolved in the )b b b(i ,j ,k



 

 frame, the velocity of C  is written 
as C b b bV =ui +uj ivk+




 

  and the angular velocity of 0B  is written as
b b bpi qj rkΩ = + +




 

We assume that the only efforts acting on B  are the weight and the 
aerodynamic efforts created by the propellers, as described in the 
previous section. In particular, we neglect the drag created by the 
frame, which is quadratic with respect to the velocity, hence small at 
low velocities with respect to the rotor drag. Newton’s laws for the 
entire system are thus written as

4

1
C i

i
m V = m g + F

=
∑

 



 				                   (3)

4

1
C i i i

i
= CA× F + Mσ

=
∑
  





B 			                                (4)

where ( )C CM MC d Mσ µ
•

= ×∫
 

B

B
is the kinetic momentum of B . 

For each iB , we can further write

i

i b i b i iA ·k =M ·k +  σ ε Γ
 







B 				                  (5)

where ( )i

i i
iA iA M A M d M  µσ

•

= ×∫


 

B

B
 is the kinetic momentum of iB and 

iΓ  is the (positive) electromagnetic torque of the motor. For sim-
plicity, we have considered iA  as the center of mass of iB (in fact 
the two points are slightly apart). We also consider the i sΓ ′  as the 
control inputs (it is nevertheless easy to include the behavior of the 
electric motors, both for modeling and control).

We now evaluate the right-hand sides of (3)-(4). Since

iA C i C b i V =V +CA+AA V +h ×k + ×AAΩ Ω=
  

    

we have

4

4)
i3 A b

3 C b i b

3 C b 4 3 i

V ×k
= ( V +h k AA k
=  V k + ' +r AA  

λ λ Ω
λ Ω Ω λ Ω
λ λ Ω λ

⊥

⊥

⊥

+

× + × × +
×


 

 
   


 

2

2) ( )
i1 A b

1 C b i b

1 C 2 b 1 i b

V + k
= (V +(h k AA k
= V + ' +k - r AA k  

λ λ Ω

λ Ω Ω λ Ω
λ λ Ω λ

⊥

⊥ ⊥ ⊥

⊥

×

× + × + ×
×


 

 
   

 
 

where we have used the fact that i AA


 is collinear to either bi


or bj


, 
and set 1 12' hλ λ λ= + and 4 34' hλ λ λ= + . Therefore,

4 4 4
2

1 2
1 1 1

4

3 4
1

4 4

1 3
1 1

4 4
2

1 2
1 1

( ' )

( ' )

( '

i i b i C b
i i i

i i C b
i

i i b i i 
i i

i b i C b
i i

F a k V k

V k

r AA k r AA

a k V k

ω ω λ λ Ω

ε ω λ λ Ω

λ ω λ ε

ω ω λ λ Ω

⊥

= = =

⊥

=

= =

⊥

= =

   
= − − + ×   

   
 

− × + 
 

   
+ × −   

   
   

≈ − + ×   
   

∑ ∑ ∑

∑

∑ ∑

∑ ∑

 
  


 

 

 
 

)

In the last line, we have neglected small terms according to the sec-
ond extra assumption of the single properller model. Indeed, in hover-
ing CV



 and Ω


, hence 
iAV


are  zero ;  from (1)–(4) this implies that
2 2 2 2
1 2 3 4( )a mgω ω ω ω+ + + =

and 2 2 2 2 2 2 2 2
1 2 3 4 1 3 2 4 0ω ω ω ω ω ω ω ω− + − = − = − = , 

and eventually 
4i
mg

a
ω ω= = . 

As a consequence
4 4

1 1
1,i i ii i i A
l

Aε ω ω
= =∑ ∑



and
4

1
1 , i i ii

AA
l

ε ω
=∑



 
also vanish in hovering ; “near” hovering they are therefore small with 
respect to 4

1 ii
ω

=∑ .

Similar computations yield
4

1

4 4
2 2

1 1

4 4
2

1 1 1 3 4
1 1

( ' " )

ii i i i
i

i i b i i b
i i

b C b
i i

CA ×F +AA ×F  M

a AA ×k b k

r l k V ×k

ω ε ω

λ ω ω µ µ Ω

=

= =

⊥

= =

+

   
≈ − −   

   
   

− − +   
   

∑

∑ ∑

∑ ∑

 
  

  



 


where 3' 3 1=  hµ µ λ− and " ' )4 4 1 2= + h(µ µ µ λ+ .

Notice that the contributions of 3 4, λ λ  in the forces (1) and of 1 2, µ µ  
in the moments (2) (nearly) cancel out in the right-hand sides of (3)-
(4), due to the fact there are two clockwise and two counterclock-
wise-rotating propellers. 

We then evaluate the left-hand sides of (3)–(5). The approach is fairly 
standard.

1

4
1

4
1

(

O

O

i

C

i

i i i b ii

i i

= CM× d (M) 

= CM× d (M) 

+ CM×( + ) d M)

= CM×( ×CM ) d (M)

+ CM×( ×CA +( + k )×A M

CM

CM

CA A M

) dµ(M)

= CM×( ×

σ µ

µ

µ

Ω µ

Ω Ω ε ω

Ω

•

•

• •

=

+

∫

∫

∑ ∫
∫
∑ ∫

∫









 






 
 



 










B

B

B

B

B

B

B

1

4
1

4
1

4
1

(

.

(

i

i

i i i b ii

C i i bAi

b b r i i bi

CM )d (M) 

+ A M×( k ×A M ) d M)

= ( .k )

=Ipi Iqj Jr J )k

µ

ε ω µ

Ω ε ω

ε ω

=

=

=

+

+ + +

∑ ∫
∑

∑



 






 

 

B

BB

where rI; J; J  are strictly positive constants. In the last equation, in 
the computation of the inertia tensors i

iA,   BB  we have replaced 
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In (6)–(7) we have assumed 2' 2 1 = + h 0λ λ λ ≈ , which is sensible 
since 2λ  and h  are nearly 0 (notice that 2' 0λ =  can always be 
enforced by slightly shifting the center of mass). Finally, the angles 
and angular velocities are linked by

cos

= p+(q sin +r cos )tan  
=qcos r sin 

q sin +r cos =

φ φ φ φ

θ φ φ
φ φψ

θ

−



Equations (6)–(15) form the complete 13-dimensional nonlinear 
model of the quadrotor.

A further simplification is to replace 
4

1 ii
ω

=∑ by 4ω  in (6) – (12) 
since iω  remains close to w  in normal flight and moreover use the 
fact that the propeller moment of inertia rJ  is very small with respect 
to J I− ;  this yields

1

1

4 2
1

2 2
4 2 3 4
2 2
4 2 3 4

42
1 1

2
21
1

4sin

4sin cos

cos cos

( ) ( )4 ( ' " )

( ) ( )4 ( ' " )

4

4 , 1,

ii

i ii

r i i i

u qw rv g u
m

v ru pw g v
m

aw pv qu g
m

Ip J I qr a v p

Iq J I qr a u p

Jr l r

l JrJ r b i
J

ωλθ

ωλφ θ

φ θ ω

ω ω ω µ µ

ω ω ω µ µ

ωλ ε Γ

ωλω ε Γ ω

=

=

+ − = − −

+ − = − −

+ − = −

+ − = − +

+ − = − +

= − −

− = − =

∑

∑













 2,3,4

Equations (16)–(22) can be used instead of (6)–(12) with no notice-
able loss of accuracy.

Model of the inertial sensors

The quadrotor is equipped with strapdown triaxial gyroscope and ac-
celerometer. Without restriction, we assume that the sensing axes 
coincide with , , .b b bi j k



 

The gyroscope measures the angular velocity
Ω


, projected on its sensing axes, i.e., x y z(g ,g ,g )=(p, q, r),  the 

accelerometer measures the specific acceleration Pa = V g−


 

 of the 
point P  where it is located, projected on its sensing axes; see for 
example [18, Chap. 4] for details on inertial sensors. Hence, by (3) 
if the accelerometer is located at the center of mass C , which is the 
case for most quadrotors, it measures

4
1

1
C ii

a = V g= F
m =

− ∑
 

 



 

by (3), the accelerometer thus measures

1
1 2 3 4

1
1 2 3 4

2 2 2 2
1 2 3 4

. ( )

. ( )

. ( )

x b

y b

z b

a a i u
m

a a j v
m
aa a k
m

λ
ω ω ω ω

λ
ω ω ω ω

ω ω ω ω

= = − + + +

= = − + + +

= = − + + +













the actual propellers by disks with the same masses and radii, and 
taken advantage of the various symmetries ; this "averaging" approxi-
mation is justified by the fact that the propeller angles vary much 
faster than all of the other kinematic variables (besides, this approxi-
mation is already heavily used in the blade element theory used to 
derive (1)-(2)). Using the same approximation,

( )

( ) ) ( )

.( )

( )

i

i i

i

i

i

i iA

i i i b i

i i bA

r b r b r i i b

= A M A M dµ M

= A M k A M dµ M

= k

=I pi I qj J r k

σ

Ω ε ω

Ω ε ω

ε ω

×

× + ×

+

+ + +

∫
∫

 



 







 

B

B

B

B

where rI  is a strictly positive constant. Eventually,

4
1

4
1

4
1

( ).

. ( )

.

i

i

C b

C b

C b

r i iiC b

C b r i ii

C b r i ii

C

V ·i u qw ru
V . j   = v ru pw

w pu quV · k

Ip J I qr J qi

j = Iq J I pr J p

k Jr J

ε ωσ

σ ε ω

σ ε ω

σ

=

=

=

 
+ −  

   + −    + −    
 

 + − +      + − +         +   

∑
∑

∑















































B

B

B

B . ( ) 1,2,3,4b r i ik = J r iε ω+ =




To describe the orientation of the quadrotor, we use the classical
, ,φ θ Ψ Euler angles (quaternions could of course be used). The di-

rection cosine matrix , ,Rφ θ Ψ  to convert from Earth coordinates to 
aircraft coordinates is then

C C C S S
S S C C S S S S C C S C
C S C S S C S S S S C C

θ ψ θ ψ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ

− 
 − + 
 + − 

so that ( sin sin cos cos cos )g g i j kθ φ θ φ θ= − + + .

Collecting the previous findings (3)–(5), we eventually have

41
1

41
1

4 2
1

4
1

42 2 ' ''
1 3 3 4 1

4
1

2 2 '
3

ii

ii

ii

r i ii

ii

r i ii

1 3

 
u+qw rv = g sin u  

m
 

v+ru pw = g sin cos v
m

a w+pv qu = g cos cos
m

Ip+(J I)qr+J q

= a( - )+( v+ p) 

Iq (J I)pr J p

=a( )+( u

λ
θ ω

λ
φ θ ω

φ θ ω

ε ω

ω ω µ µ ω

ε ω

ω ω µ

=

=

=

=

=

=

− − −

− −

− − −

−

− − −

− −

∑

∑

∑

∑
∑

∑











4''
4 1

4 4
1 1 1

2

ii

2
r i i ii i

r i i i i

q)

(J 4J )r = l

J ( r+ )= b  i=1,2,3,4

µ ω

λ ω ε Γ

ε ω Γ ω

=

= =
− − −

−

∑
∑ ∑



(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)
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As in the previous section we can replace (23)–(24), without a no-
ticeable loss of accuracy, by

1

1

4

4

x

y

a u
m

a v
m

ωλ

ωλ

= −

= −

This shows that x ya , a  actually measure the quadrotor longitudinal 
and lateral velocities (while za  measures the total thrust).

Linearized model

To highlight the salient features of the revisited model (6)–(15) and 
its measurements, it is enough to consider its first order approxima-
tion. Suitably putting together variables, this linearized model can be 
divided into four independent subsystems :

•	 longitudinal subsystem (states , 1 3u,  q,θ ω ω− ; input 1 3Γ Γ−

measurements 1
x

4a u
m
ωλ

≈ − and  yg q≈ )                                       

       

1

3 4 1 3

1 3 1 3 1 3

4

4 ' 4 " 2 ( )
( ) 2 ( )r

u  g u
m

q
Iq µ u q al

J b

ωλ
θ

θ
ω ω ω ω ω

ω ω Γ Γ ω ω ω

≈ − −

≈
≈ − + −

− ≈ − − −







 

•	 lateral subsystem (states , , , 4 2v   p  φ ω ω− ; input 4 2Γ Γ−  

       measurements 1
y

4a  v 
m
ωλ

≈ −  and x g p≈ )                                                 

1

1 4 4 2

4 2 4 2 4 2

4

4 ' 4 " 2 ( )
( ) 2 ( )r

v  g v
m

p
Ip µ v µ p al

J b

ωλ
φ

φ
ω ω ω ω ω ω

ω ω Γ Γ ω ω ω

≈ − −

≈
≈ − − + −

− ≈ − − −







 

•	 vertical subsystem (states 4
1i iw, ω=∑ input 4

1i iΓ=∑
       measurement 4

1
2 )z i i

aa g
m
ω ω=≈ − − ∑  

( )4
1

4 4 4
1 1 1

2 4

2

ii

r i i ii i i

aw
m

J b

ω ω ω

ω Γ ω Γ

=

= = =

≈ −

≈ −

∑

∑ ∑ ∑





•	 heading subsystem (states
4

1
;i ii

; r;ψ ε ω
=∑ input

4
1 i ii
ε Γ

=∑
measurement zg r≈ )

4
2

1
1

2 4 44 1
1

1 1

4

16
2

i i
i

r
r i i i i i ii

i i

r

Jr l r

l JJ r b w
J

ψ

ωλ ε Γ

ωλ
ε ω ε Γ ω ε

=

=
= =

≈

≈ − −

≈ + −

∑

∑ ∑ ∑







In the sequel we concentrate on the longitudinal system, where ac-
celerometer feedback is of paramount importance (the lateral subsys-
tem is the same up to a sign-reversing coordinate change). Setting 

1 3
q 1 3 q

r

  
 = ,  =  

J
Γ Γ

ω ω ω Γ
−

− and

31 4
1 2 3 4 5

4 '4 4 " 2 2( , , , , ) , , , ,( )
r

al bf f f f f
m I I I J

ωµ ωµ ω ωωλ
=

the longitudinal subsystem is thus written as

1

2 3 4

5

q

q q q

u f u g

q
q f u f q f

f

θ

θ
ω

ω Γ ω

= − −

=
= − +

= −









with measurements 1xa = f u −  and y g =q

Departure from the “conventional” model in the literature

Most authors consider a propeller model with only the bk


 terms in 
(1)-(2), i.e., with all '

i sλ ’s and '
iµ s’s equal to zero. Hence, the “conven-

tional” model is the same as the revisited one but with the '
i sλ ’s and 

'
iµ s’s equal to zero in (16)–(22) and (26)– (27).

However, there is obviously a problem with such a model : indeed

Ca V g= −


 

  is collinear with bk


, hence x ya = a = 0, which is certainly 
not very useful for feedback. This paradox is usually not acknowl-
edged and the approximation a g≈ −

 

 is used instead, i.e.,

( , , ) ( sin , sin cos , cos cos )x y za a a g g gθ φ θ φ θ≈ − −                  (32)

The reason proposed is that CV


 is small near hovering, at least in aver-
age. This is indeed true if the aircraft is stabilized by some extraneous 
means (such as a human pilot), but is a questionable assumption to 
use from a closed loop perspective. Nevertheless, many successful 
flights with controllers based on this approximation have been re-
ported. In IV-C, we suggest an explanation reconciling all of those 
facts in the light of the revisited quadrotor model.

The resulting “conventional” longitudinal subsystem is then

4

5

q

q q q

u g
q

q f

f

θ

θ
ω

ω Γ ω

= −

=
=

= −









with measurements xa  = gθ and yg  = q,  to be compared with (28)–
(31) with measurements 1xa = f u−  and g  = q,

Experimental validation

Experimental setup

To validate the model, we recorded flight data with our home-built 
“Quadricopter”, see figure 1. Due to limitations of our experimental 
setup, we could collect data to validate only the force model (28), but 
not the moment model (30); this is nevertheless the most important 
part of the model, since it accounts for the accelerometer measure-
ments. The quadrotor was fitted with a MIDG2 “GPS-aided Inertial 
Navigation System”3 and a radio data link to the ground station. The 
MIDG2 consists of a triaxial accelerometer, a triaxial gyroscope, a 
triaxial magnetometer, a GPS engine and an on-board computer. The 
raw measurements are fused by an EKF on the onboard computer to 

(28)

(29)

(30)

(31)

(26)

(27)

(33)

(34)

(35)

(36)
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provide estimates of the orientation and of the velocity vector with 
respect to the Earth axes. The MIDG2 is an “independent” device with 
no knowledge of the specific system that it is fitted on; it heavily relies 
on the GPS engine for good dynamic estimates, without using as-
sumption (32). All of the data can be issued at a pace of up to 20 ms. 
Due to the low throughput of the radio data link, only the accelerome-
ter raw measurements xm yma , a and the MIDG2-computed quantities

,m m m,  φ θ ψ and x y zV , V , V  were transmitted to the ground station, 
at the reduced pace of 40 ms.

We flew the quadrotor performing repeated back and forth transla-
tions at a (nearly) constant altitude and recorded one minute of flight 
data. Since a GPS module is used, the test was conducted outdoors, 
on a very calm day to respect the no-wind assumption.

Figure 3 -  Comparison between 
1

,xa u
f θ

and u

Figure 4 - Comparison between xa and gθ

Validation of the force model

Due to an imperfect mechanical design of our quadrotor, the MIDG2 
case is not exactly aligned with the quadrotor frame, but rather tilted 
by the unknown (small) angles ,0 0 0,φ θ ψ . The angle and acceleration 

1.5

1

0.5

0

-0.5

-1

-1.5

0	 10	 20	 30	 40	 50

uθ

u

ax /f1

Velocity (m/s)

Time (s)

1.5

1

0.5

0

-0.5

-1

-1.5

0	 10	 20	  30	  40	  50

Time (s)

Acceleration (m/s)

data must be rotated accordingly to be expressed with respect to the 
quadrotor axes (the velocity data requires no correction, since it is 
expressed relative to the Earth axes), that is

0 0 0

0 0

, ,

( , , ) ( , , )m o m m

x xm
T

y ym

z zm

a a
a R a

a a
φ θ ψ

φ θ ψ φ φ θ θ ψ ψ= − − −

  
  

=   
  

   

Dropping higher-order terms, this yields

0 0 0

0 0 0

x xm ym zm xm

y xm ym zm ym

a a a a a g

a a a a a g

ψ θ θ

ψ θ φ

≈ − + ≈ −

≈ + − ≈ −

The velocity vector in relation to the body axes is obtained by

, ,

x

y

z

Vu
v R V
w V

φ θ ψ

  
   =   

      

and is considered as the “true” reference velocity to validate our mod-
eling assumptions. 

We also wanted to compute the velocities uθ  and uφ predicted by the 
integration of the linearized force model (28)

1

1

u f u g
v f v g
θ θ

φ φ φ

θ= − −

= − +





with initial conditions (0) (0)u u  and (0) (0)v vφ =  . 

The task was then to adjust 1 0 0 0, , ,f φ θ ψ  to get a good fit between 

1
,xa u

f
−  and uθ  on the one hand, and between 

1
,ya
v

f
−

v  and vφ  on the other hand. Since the accelerometer data are quite 
noisy and requires some filtering, the same filter (5th order Bessel filter 
with 2 Hz cutoff frequency) was applied to all of the data, in order to 
preserve the transfer functions among them. 

With 0 0 0
-1

1(f , , , )=(0.25s ,1.2°,-2.4°,2°)φ θ ψ  the agreement is good 
between the “true” (i.e., MIDG2-given) velocity u, the "accelerometer-

based" velocity 
1

,xa u
f

−   and the velocity uθ "predicted" by the model

from the “true” (MIDG2-given) pitch angle, see figure 3, which rea-
sonably validates our force model. The agreement between

1, /yv a f−  and vφ not shown for lack of space, is equally good.

To test the conventional approximation (32) we also plotted( , )xa gθ , 
see figure 4. Though the trend is roughly correct, the fit is much worse ; 
the result is similar for ( , )ya gφ− .

Other validations of the force model in the literature

Since the publication of [19] several authors have experimentally con-
firmed (using a motion tracking system) the proposed force model 
[21], [22], [23].

ax

gθ
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Implications for control schemes

We now investigate the relevance of the revisited model in the 
presence of a feedback controller, with (section IV-A) and without 
(sections IV-B and IV-C) velocity measurements. We use the numeri-
cal values

2 3 4 51_(f ,f ,f  ,f ,f )=(0.25,0.76,-9.8,0.34,12.74)
1f  was determined from flight tests and 4 5,f f  were determined from 

static tests on the motor-propeller subsystems. The aerodynamic co-
efficients 2 3,f f  were derived analytically ; their values are plausible 
but nevertheless questionable.

Two-time-scale “full-state” feedback

We first assume that the entire state is known, or which turns out 
to be equivalent, that u  and q  are measured without noise so that 
they can be used in ideal Proportional-Derivative (PD) controllers. It 
is customary to design a two-time-scale control law, with a fast inner 
loop to control , qq ω  and a slow outer loop to control ,u θ .

The fast inner loop is the ideal PD controller

2 2
p pd

q r
k kkq q q
ε ε

Γ
ε

= − − +

where rq  is the desired pitch rate ; p dk ,k  are the PD gains and >0ε  
is a “small” parameter. Applying this feedback to (28)-(31) yields

1

4

4

( )
( )

q

q p d q p r

u f u g
q

q f
k q f k k q

ε ε
ε

θ
θ

ω
ωω ε

= − −
=
= +
= − − + +













O
O

where q qω εω= . From standard arguments of singular perturbation 
theory [24], the convergence of the fast variables is up to order ε
ruled by the well-known coefficient 4f  and the PD gains ; and the 
behavior of the slow variables ,u θ  is up to order ε  ruled by the slow 
approximation

1u f u gθ= − − 					                  (37)

rqθ = 						                   (38)

Hence, the role of the aerodynamic coefficients 2 3f , f  is marginal if 
the inner loop is fast enough.

The slow outer loop is the ideal PD controller

1 2 1 rrq k u k u k u= + −

where ru  is the desired velocity and 1 2k ,k  the PD gains. Applying 
this feedback to (37)-(38) yields

1u f u gθ= − −

1 1 2 2 1( ) rk f k u gk k uθ θ= − − −

with characteristic polynomial 2
1 2 1( ) .s f gk s gk+ + +  A reasonable 

closed-loop settling time is of about 1s, which requires 2
1 6gk =  and 

1 2 6 2.f gk+ =  This means that 1f =0.25 is negligible with respect 
to the effect of the controller.

We thus see that the revisited moment equation (30) does not really 
matter if the gyroscope measurements are good enough for a fast 

loop, which is usually the case in practice; nevertheless, taking into 
account 2f  and especially 3f  may help to design a better inner loop. 
As for the force model (28), it does not really matter either, provided 
that a velocity measurement is available, which agrees with [5]. The 
importance of 1f  is nevertheless paramount to account for the ac-
celerometer measurements, as will be seen in the following sections.

Conventional interpretation of accelerometer feedback

Once the inner loop is closed, the usual slow model is
u gθ= −

rqθ =

with measurement .xa gθ=  Since the velocity u  is clearly not ob-
servable, the role of the outer loop is simply to control the measured 
angleθ . In theory, the simple proportional feedback

( )x
r r

a
q k

g
θ= −

does the trick, but in practice the accelerometer measurements are 
too noisy to be used directly (not only because of the intrinsic sensor 
noise, but also because of mechanical vibrations). Instead, an “angle 
estimator” is often used, based on the model qθ =  with measure-
ments xa =gθ and yg =q.  A more elaborate estimator, for example an 
EKF or a nonlinear observer, can also be used, see the references in 
the introduction; it is then based on the nonlinear kinematic equations 
(13)–(15) and relies on the approximation (32). Whatever the filter, 
the first-order approximation is essentially the linear observer
ˆ ˆ( )x

y
ag l
g

θ θ= + −

it can also be seen as a complementary filter, since its transfer 

function is ˆ
xq a

s l
s l s l

θ θ θ= +
+ +

 where q
q
s

θ = is the pitch angle 

obtained from gyro integration and
x

x
a

a
g

θ =  is the pitch angle given 
by the accelero.

The outer loop is thus the controller-observer
ˆ( )r rq k θ θ= − 					                 (39)

ˆ ˆ( )xaq l
g

θ θ= + −

				                 (40)

Applied to the usual model and defining the observation error 
ˆeθ θ θ= −  it yields the closed-loop system

u gθ= −

( )rk eθθ θ θ= − −

e leθ θ= −

For rθ  constant, the last two equations have the unique steady state 
( , ) ( ,0).reθθ θ=  The characteristic polynomial is 0 ( )( ),s k s l∆ = + +
and the closed-loop transfer functions are

r
k

s k
θ θ=

+
					                 (41)

( ) r
gku

s s k
θ−

=
+

					                  (42)

Provided that k,l>0  we have as desired ( , ) ( ,0),reθθ θ→  while u  
grows linearly unbounded. For robustness, a good tuning of (39)- 
(40) requires that the controller and observer act in distinct time 
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scales (Loop Transfer Recovery), i.e., l >> k or k>>l . We consider 
in the sequel a “slow” observer, which is representative of commer-
cial "angle sensors" such as the 3DM-GX, and a "fast" controller ; for 
a settling time of about .1s, we choose for example 1/ 0.3k =  and

1/12l =

We tested this control scheme experimentally, with a rather satisfying 
result : the angle θ reaches the desired ,rθ  though the dynamics are 
somewhat more sluggish than expected. The usual analysis could 
thus be considered as reasonably justified. Nevertheless, it does not 
account for the following experimental observations already visible to 
the naked eye :

•	 when pushed away from hovering, the quadrotor returns to hov-
ering (of course at a different position)

•	 when flying at a constant velocity u , the angle θ  is not zero, but 
rather approximately proportional to u

•	 in response to a constant ,r uθ  does not grow unbounded, but 
rather reaches a value approximately proportional to rθ .

Though these experimental facts are well-known to people in the field, 
they do not seem to be reported in the literature. The discrepancy is 
usually attributed to the neglected second order aerodynamical drag 
and the inevitably imperfect experimental conditions. Another more 
subtle discrepancy is that the observer gain l must be smaller than 
that predicted by the theory, in order to avoid a badly damped tran-
sient (e.g., l=1/3  does not work well in practice).

As will be seen in the following section, these experimental facts can 
be explained by the revisited model.

Figure 5 - Comparison between control schemes (simulation)

Revisited interpretation of accelerometer feedback

We now apply the controller-observer (39)-(40) to the revisited longi-
tudinal model. The closed-loop system is now

1u f u gθ= − −

( )rk eθθ θ θ= − −

1( )fe l u e
gθ θθ= − + +

with ˆ .eθ θ θ= −  For rθ  constant, the only steady state is 

1
( , , ) ( , ,0);r r

gu e
fθθ θ θ= −  the characteristic polynomial is

3 2
1 1 1( ) ( )s k l f s f k l s f kl∆ = + + + + + +

If 2
1 1, ( )( )k l s k s f s f l∆>> + + + so that the closed-loop system is 

stable as soon as k,l>0. Hence rθ θ→  as desired, and 0eθ →  as 
expected from the observer ; u  now tends to the finite value 

1
r

g
f
θ−  

which is more consistent with experimental tests. If moreover 1,l f<<

1 1 0( )( )( ) ( )s f s k s l s f∆ ∆≈ + + + = +

As a consequence, the closed-loop transfer functions are

1( )( )
r r

k s f s l k
s k

θ θ θ
∆

+ +
= ≈

+

1

( )
( )( )r r

gk s l gku
s f s k

θ θ
∆

− + −
= ≈

+ +

to be compared with (41)-(42) : the angle dynamics is near-
ly the same as that given by the usual interpretation, while 
the velocity dynamics is dominated by the rotor drag time 
constant 11/ f . Defining the reference velocity 1/u g fr rθ= − we see 
that the usual control scheme, designed as an angle controller, is in 
fact a velocity controller!

The behavior experienced in practice is qualitatively and quantitatively 
well predicted by the revisited model, see figure 5 (“usual design”), 
the time response to a 1.5°−  step in rθ  (i.e. a 1 m/s step in ur ).

From this analysis, we see that the importance of the coefficient 1f  
is paramount : the usual scheme works reasonably well only because 

1f  is positive and not too small.

A better control law

The performance of the usual control scheme is limited by the rotor 
drag time constant 11/ f  . Better performance can be achieved by 

considering a controller-observer based on the revisited model,

1 2
1 2 1

ˆˆ ( )r r
f kq k u k k u
g

θ= − − + −

1 1 1
ˆˆ ˆ ˆ( )xu f u g l a f uθ= − − + +

2 1
ˆ ˆ( )y xg l a f uθ = + +

where ru  is the velocity reference, 1 2k ,k  are the controller gains and 
1 2l ,l  are the observer gains. Figure 5 shows simulation results for 

the same scenario as before (1 m/s reference step in velocity). Two 
different tunings were used: in the first case (“New Design #1”) the 
controller is tuned for a settling time of about 12 s and the observer 
is tuned for about 48 s, so that the angle and velocity have initial 
transients similar to the tuning used previously for the usual design 
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(and with a similar control effort); in the second case (“New Design 
#2”) the controller is made four times faster.  

Both designs were successfully implemented, resulting in a quadrotor 
that is much easier to fly than with the usual scheme. In practice, it 
was difficult to accelerate the time responses much further, probably 
mainly due to accelerometer noise.

Conclusion

We have proposed and experimentally verified a revisited model of the 
quadrotor. It is different, even at first-order, from the model usually 
considered in the literature. It gives a different interpretation of ac-
celerometer measurements and explains why control schemes based 
on the conventional model nevertheless behave reasonably well 

Acronyms

EKF	 (Extended Kalman Filter)
GPS	 (Global positioning system)
MEMS	 (Micro Electro Mechanical Systems)
UAV 	 (Unmannned Aerial Vehicle) 
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