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Artificial Intelligence and Decision Making

Recent Examples of 
Deep Learning Contributions 
for Earth Observation Issues

The purpose of this article is to take stock of the progress made in remote sensing 
thanks to the recent development of deep learning techniques. This assessment 

is made by means of a systematic presentation of the various activities carried out 
at ONERA in remote sensing imagery using deep learning methods. It covers a large 
part of the observation problems: filtering, object detection, land-use classification, 
change detection, and biomass estimation. In light of these activities, we highlight the 
practical challenges of deep learning, mainly physical feature definition and training 
database construction. Some directions for future research are also given, such as 
the development and use of dedicated remote sensing platforms, hybrid supervised/
unsupervised strategies, and the further exploitation of multimodal/multitemporal data.
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Introduction

The rise of open-data makes it possible to promote the use of deep-
learning in many areas. Also, many experts around the world are 
wondering about the progress that deep-learning methods will allow 
in the coming decades, and seek to predict when the performances 
of automatic algorithms will exceed those of humans, in several 
tasks: for translating; writing text, driving vehicles, performing surgi-
cal operations, etc. It would therefore seem that the more the field 
corresponds to a broad need, the more deep-learning allows rapid 
improvements.

In this context, the field of remote sensing is a much smaller field 
today in terms of the number of users and needs, than more con-
ventional domains such as language, classical images, or text. How-
ever, even though the concerned audience is less extended, remote 
sensing data processing is undergoing the same revolution as other 
sectors of big data. The number and the diversity of sensors increase 
very quickly, at two levels:

•	 The rise of open data, in particular through data from the Euro-
pean Copernicus observation program, which delivers free im-
ages acquired since the end of 2014, and produces a petabyte 
of data every six months [39].

•	 The development of commercial-type data and the democrati-
zation of satellite systems, with more and more launching con-
stellations of micro or even nano-satellites [15, 11].

This entrance into the big data movement promises exciting develop-
ments of deep learning methods for remote sensing images. All the 
more so since remote sensing data are mostly images, and since the 
most significant improvements in deep learning were made recently 
on images in computer vision through the ImageNet dataset [29].

Implementing deep learning methods requires a certain number of 
choices to be made: which databases and how to access them, 
which servers or computing power, and which learning architectures 
for a given function.

First, to successfully implement a deep learning application, it is 
necessary to have access to massive datasets. These are essential 
to the performance of artificial intelligence systems and, therefore, 
highly strategic. The quantity and nature of these data will guide the 
technological choices. Similarly, if the data are subject to protection 
constraints, such as military data, they will have to be processed on 
dedicated servers, which then directs the technological choices.

In any case, the data-processing tool remains the core of a learning 
method. Many companies compete in this market: big names like 
Amazon; Google with TensorFlow, Caffe (a project initiated at the Uni-
versity of California at Berkeley), and Torch (widely used and improved 
by Facebook engineers), can be used for remote sensing images.
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However, the functions deduced from the remote sensing images 
that we are trying to learn are of a very different nature from that of 
those for which these large classical networks have been developed. 
For example, we can mention some specificities of remote sensing 
images compared to the standard images of the web: 

•	 A remote sensing image contains multiple objects, spatially 
distributed and organized on several pixels. When we deal with 
remote sensing classification, it is not a label of a single image 
that we are trying to find, but rather different labels for all of the 
pixels or group of pixels in the image.

•	 Remote sensing images do not look like conventional images. 
Full-wave LIDAR images, for example, correspond to a com-
plete profile describing the vertical structure of the object for 
each pixel. Radar images or SAR images are subject to particu-
lar statistics due to speckle, and can highlight particular physi-
cal effects that are invisible in optics (for example, humidity 
effects). Hyperspectral images contain spectral information and 
are therefore datacube images. Remote sensing time series are 
more and more easily accessible, when several acquisitions of 
the same scene are repeated over time.

•	 Finally, some functions are specific to this field. This, for ex-
ample, is the case of the detection of changes between two 
images, to determine the differences between two acquisitions 
of the same scene, or the transfer of modalities: we try to move 
from one type of images to another when the information that 
they contain is related to the same underlying physical phe-
nomena. Note that these functions are also important in other 
domains, such as the medical domain, where deep learning 
methods have been well developed.

ONERA conducts a large number of works in remote sensing imagery, 
on the one hand, and in artificial intelligence on the other. This dual 
competence makes it possible to ensure expertise in the use of deep 
learning for remote sensing applications by identifying the particular 
difficulties and also the opportunities.

The purpose of this article is twofold:
•	 First of all, to show, for a certain number of different cases 

studied at ONERA, how machine learning allows significant im-
provements in performance on functions based on the use of 
remote sensing images. 

•	 Then to analyze, for each case, the major difficulties encoun-
tered in the implementation of these AI methods.

Compared with other articles summarizing the contributions of deep 
learning to remote sensing, this article is not intended to be exhaus-
tive on the existing methods in the field, but rather to reveal recent 
and original results obtained specifically at ONERA, either in terms of 
methods, or in terms of the application scenario. Most of these meth-
ods have to face the challenges of the field of deep learning, such as 
the unsupervised or weakly-supervised paradigm, in order to prevent 
the need and the cost of annotation, and the issues arising from the 
lack of interpretability of such approaches and their perspectives with 
regard to the Earth observation domain.

The choice and implementation of network architectures depend 
on both the types of input data and the function to be implemented. 
Thus, in the second section, we first analyze what the state of the art 

is regarding the use of deep learning for the main functionalities of 
remote sensing. Then, the following sections are therefore organized 
around several fundamental studies, first by the type of function 
envisaged, concerning a type of specific data.

The applications are organized by hierarchical levels, from the lowest 
level to the highest level. Five types of functions are envisaged, for 
which the difficulty of the task and/or the abundance of images has 
been considered as a significant argument for the use of a learning 
method.

The successive sections of this article deal with co-registration of 
heterogeneous images, image quality enhancement (particularly SAR 
image filtering for radar images subject to speckle noise), land cover 
classification, vehicule detection, change detection, 3D sensing and 
estimation. Then concluding remarks are presented.

Related works

The creation of large-scale image databases, such as the pioneer-
ing ImageNet [29, 46] published by Stanford University, enabled an 
impressive shift in the way that image processing is considered. 
Neural network algorithms could then be applied to images. Indeed, 
they had made considerable progress in other fields where abundant 
training data was available. However, their implementation for images 
also relied on a recent technical advance: using Graphical Processing 
Units (GPUs) for general programming. Soon, deep learning [33, 38] 
brought a significant performance gap. Deep initially referred to the 
depth of the neural networks, which comprised many hidden layers. 
However, deep also means that the processing function is trained 
end-to-end, from data to expected result. From a learning point of 
view, this was considered much more satisfactory than previous 
processing pipelines designed by experts. In particular, the feature 
extraction was then trained, and yielded much better features than 
previous hand-crafted ones. In the following years, image process-
ing underwent tremendous changes. Not only were tasks for which 
machine learning was already often considered then successfully 
addressed by deep networks, but traditional analytically-solved tasks 
became trainable.

Also, can we consider that remote sensing images are always like 
those of human vision? For traditional optical images, it is legitimate 
to think so. For other types of sensors, it is less obvious, because:

•	 Data are sometimes multi-modal,
•	 Data are geolocalized; they contain geographical maps rather 

than an object map,
•	 The time variable is becoming critical,
•	 In many cases, remote sensing is aimed at estimating geophys-

ical parameters rather than detecting or classifying objects,
•	 Some images contain physical information that is different from 

visible information, such as SAR images or full-wave LIDARs.

Using deep learning for remote sensing came a little later than it did 
for computer vision; nevertheless, today, deep learning is widespread 
in the field and often establishes a new state of the art. Also, for each 
type of functionality, it is necessary to analyze what progress has 
been made in this area.
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Up to now, the main remote sensing functions can be categorized as 
image processing, pixel-based classification or segmentation, target 
recognition, and scene understanding. A helpful review of state-of-
the-art results of deep learning in remote sensing for several applica-
tions is given in [54], especially for hyperspectral image analysis for 
land cover/use classification and anomaly detection, SAR interpreta-
tion, high-resolution optical image interpretation, and fusion. In [53], 
the review focuses more specifically on classification techniques. To 
date, the auto-encoder (AE), the CNN, the Deep Belief Network (DBN), 
and Recurrent NN (RNNs) have been the four mainstream DL archi-
tectures used in the field of remote sensing. RNN is primarily used for 
analyzing non-stationary processes, CNN for classification tasks; and 
DBN or generative AEs for all other tasks, in particular unsupervised 
ones.

Both states of the art in [54] and [53] confirm that, as in other fields, 
deep learning is making remote sensing advance, even though prog-
ress is recent and further improvements can be expected. The general 
feeling is that, in upcoming years, we can still expect great advances 
in remote sensing thanks to deep learning. It also has limitations and 
raises new challenges: the lack of annotated data, the difficulty in 
deploying and transferring models under various conditions at global 
scales, and also the taking into account of sensor physics and purely 
algorithmic tasks.

Since our first deep learning works [34, 2], we have made progress 
on several tasks at ONERA, with research on standard tasks, such 
as classification or object detection, as well as on topics that have 
been addressed very rarely, such as co-registration, or 3D estima-
tion. We detail below our recent advances in this area over the last 
5 years.

Co-registration

Co-registration of heterogeneous images is useful in various remote 
sensing image fusion applications, since a gain is expected from the 
synergy of sensors. Relevant applications are numerous, whether 
for land classification, for agriculture, or forestry applications. Some 
applications require a pixel precision and, generally, the terrain cor-
rection applied for georeferencing is not good enough. The residual 
bias arises from the impact of the imprecision on orbital or DTM 
(Digital Terrain Model) parameters during the mapping. The influence 
of the relief on such registration is non-rigid and, therefore, requires 
the estimation of a dense motion field.

In remote sensing, deep learning methods for co-registration are 
not numerous. [41] is a feature-based approach that proposes an 
architecture derived from a Siamese Neural Network (SNN) trained 
to select precise and reliable points of correspondence between the 
two images.

Recently at ONERA, we proposed the investigation of image-based 
deep learning approaches taking into account all of the pixels of an 
image. We then proposed the adaptation of PWC-Net, a CNN already 
developed in Computer Vision, in order to make it efficient for hetero-
geneous images, such as a couple of SAR/optical images. All of the 
performances of our tests were compared with a reference algorithm 
for optical flow developed at ONERA, GeFolki.

A first significant challenge was to constitute the training base. For 
this purpose, we used the Google Earth Engine (GEE) data plat-
form, able to handle both optical Sentinel-2 (S2) and radar Sen-
tinel-1 (S1) images. We selected georeferenced images assumed 
to be well co-registered together. Using the platform, we were able 
to define large footprints common to S1 and S2. For S2 images, 
we choose dates with the weakest cloud cover. Around the cor-
responding acquisition dates, the S1 radar images have been fil-
tered temporally to reduce the effects of speckle and increase their 
signal-to-noise ratio. A systematic coverage of the entire French 
territory has been established; this is to ensure a representative 
diversity of all of the landscapes encountered, such as agricul-
tural, city, forest, and mountain areas. Then, we also ar tificially 
generated, for each pair, realistic deformations whose amplitude 
is modulated spatially by the relief, given by the SRTM product 
downloaded on the same footprint.

We have considered FlowNetS [31] and PWC-Net [48], two Convolu-
tional Neural Networks (CNN) commonly used for optical flow estima-
tion in computer vision, PWC-Net being state of the art.

FlowNetS can take into account any type of input image. Without 
modifying its architecture, it could be applied successfully to our 
images. It proved robust for estimating flows. On the contrary, 
PWC-Net is conceptually defined for two entries of the same type, 
in par ticular with a shared encoding between the entries through 
the application of the same encoder. Such encoding makes no 
sense for different images. For this reason, we propose a modi-
fication of the architecture with two independent encoders. We 
separate the Siamese contracting par ts of PWC-Net into two 
different contracting par ts performing two different operations. 
Those two contracting par ts share the same architecture but can 
have different weights. Thus, there is a contracting par t specialized 
for SAR images and a second one specialized for optical images. 
Moreover, we decided to remove the lowest resolution stage of 
the architecture for both the contracting and the expending par ts, 
since it can estimate mainly large deformations. Finally, we pro-
pose to assist the training by simultaneously using three different 
loss functions exploiting the different combinations of contracting 
par ts that we can use: optics/optics, radar/optics, and radar/radar. 
We call our new architecture PWC-Net-multimodal.

Results have been tested on a new database, and compared with 
that of the GeFolki algorithm [13], which is an optical flow method 
without machine learning. Deep learning architecture performed bet-
ter, not only on data close to the training data set, but also on data 
acquired with different sensors, with significantly higher resolution. 
The expected prediction error lies between 0.7 and 1.1 pixels for 
the different deep learning architectures and for different scenarios, 
whereas it lies between 2.3 and 3.4 for GeFolki.

Concerning FlowNet, PWCNet, and PWC-Net-multimodal, we 
have shown that the results obtained using the three methods are 
close, with a better result having been achieved with our PWC-Net-
multimodal method. Furthermore, the PWC-Net-multimodal method 
is more robust to train with excellent repeatability, while the original 
PWC-Net does not converge every time we try to train it with hetero-
geneous data.
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One example of the result obtained by PWC-Net-multimodal is given 
in Figure 1. The first column in Figure 1 shows a mosaic of the optical 
and radar images before and after registration. The optical-radar junc-
tions of the mosaic highlight some structures that are shifted before 
registration, and that our algorithm manages to align well. The middle 
column represents the norm of the flow and its direction in color. The 
top image gives the ground truth, and the bottom image gives esti-
mated results. We see that the estimated flow has the right direction 
but still lacks spatial details. However, the absolute flow errors remain 
less than 2 pixels, and the relative error remains below 20%.

Mosaique of optic 
and radar zoom

Mosaique of optic and 
radar resampled zoom

Flow ground truth

Estimated flow

Norm of the flow ground 
truth mean: 5.53
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Norm of the error 
mean error = 0.969

Hue: orientation 
of the flow

Saturation:  
norm of the flow

Figure 1 – Mosaic of Sentinel-1 and Sentinel-2 images of the same zone (First 
column). The ground truth flow and the flow estimated with PWC-Net trained 
with our dataset (middle column). The quadratic norm of the ground truth 
flow and the norm of the error of the estimation (last column).

Perspectives
Given that databases with different modalities such as SAR/optical 
images are still being widely developed, progress is likely to continue 
thanks to deep learning. Methods should take advantage of the speci-
ficity of the different modalities. For example, the different polariza-
tions for radar images can be used together to improve efficiency. We 
also plan to test and improve robustness to the possible presence of 
clouds or changes. Finally, we have to tackle the co-registration prob-
lems for high-resolution images by considering a new formulation 
taking into account the 3D aspects, since the resolved 3D elements 
such as buildings can have different projections, without any bijective 
relationship between them.

Image quality enhancement

The notion of noise filtering is particularly crucial for radar images 
because these images have an inherent speckle noise. Many algorithms 
strive to remedy this noise through the speckle filtering operation. Up 
until now, all of the algorithms exploited spatial information. Now, as 
time-series become available, temporal information can also be used.

Speckle filtering methods usually fall into two categories: noise 
modeling and data-based approaches. The later includes machine 
learning methods. The amount of available data and the difficulty in 

modeling generic de-noising methods make the use of deep learn-
ing an already efficient solution [52, 50]. However, most proposed 
solutions rely on supervised methods, and thus on the description 
of ground truth, which is, in this case, the achieved goal at the filter-
ing output. An essential difficulty is knowing how to describe what 
is meant by ground truth in this case. Obtaining training datasets by 
using simulation is one of the possible remedies, but transfer to real 
SAR data remains a significant challenge.

The originality of the work undertaken at ONERA in this area is the use 
of time series to avoid having to provide an objective [12]. We pro-
pose to use the redundancy of the data in the stack, and to formulate 
the problem as follows: given two realizations I1 and I2 of the same 
scene, let us learn to predict I2 from I1. The transfer function itself 
performs the filtering of the random part of the signal, keeping only 
the deterministic part.

We have tested several networks and several loss functions, and we 
have also compared our results with other spatiotemporal filtering 
methods, such as BM3D [26] and SAR-BM3D [44]. The best results 
are achieved using dilated convolutional networks and histogram loss, 
which is defined by a distance 2  on the histogram vector of a given 
pixel x X∈  in its neighborhood xN . Then, the gradients for back-
propagation are the differentiation of the previous distance. To scale up 
to large images, we do not feed the network with the whole image but 
rather with patches, with possible overlapping to prevent border effects.

The learning phase focused on an SLC Sentinel-1 image stack around 
Saclay, 20 km south of Paris. Figure 2 presents the results for Valen-
cia, a scene that is not part of the auto-encoding set (red and blue 
channels for VV and green channel for VH). The function has removed 
most of the noise, e.g., around the harbor.

Figure 2 – Filtering results over images of Valencia with a network trained on 
Paris. Top: original image, bottom filtered image.
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Although the results are not perfect, the ability to generalize has been 
demonstrated, since the network has been successfully applied, hav-
ing been learned on a very different site and for different resolutions.

Perspectives
The next steps are to manage the way in which knowledge of some of 
the metadata is included, such as polarization, incidence angle, and 
also the possibility of mixing this unsupervised approach with super-
vised ones, through the use of image databases for which speckle 
noise is added artificially.

Land cover classification

Classification tasks in remote sensing benefited the most from the 
deep learning trend [53, 54, 10]. Although image classification trig-
gered an interest in deep neural networks in computer vision, remote 
sensing tasks have their peculiarities. They include a focus on pixel 
classification or semantic segmentation (partly tied to the fact that 
remote sensing images are very large, while being only small portions 
of the Earth Surface), the variety of imaging techniques (RGB, multi-
spectral, LIDAR, SAR, etc.), and the variety of potential ground-truths, 
which lies in the existing maps of all sorts.

The abundance of remote sensing data enables us to extract relevant 
information through deep learning, for the automatic semantic map-
ping of the Earth from multimodal, aerial and satellite data, in urban 
or rural environments [40, 16, 3]. Primarily, we aim to automatically 
map the land cover and land use of large-scale scenes using all avail-
able data. Therefore, we have proposed new neural networks1 to deal 
with highly heterogeneous multimodal data, such as LIDAR and opti-
cal acquisitions [8]. Thanks to a double-flow architecture and to the 
introduction of a new neuronal block called residual correction [4, 5], 
our model has improved upon the state of the art achieved with the 
ISPRS Vaihingen and Potsdam datasets [45] for various classes, 
such as roads, buildings, vegetation and vehicles, and with another 

1	 https://github.com/nshaud/DeepNetsForEO

benchmark dataset for buildings all over the world [32]. An example 
of a segmentation result is shown in Fig. 3 on the Postdam dataset.

In the field of hyperspectral images (HS), we explored models with 
various kinds of convolutions more suited to the specific data structure. 
Indeed, we consider HS images as data cubes rather than rasters of 
standard images. We have shown that 3D convolutions are more suited 
to HS data if enough da ta are available [10]. We then released Deep-
HyperX2, an open-source toolbox that enables the scientific community 
to investigate how deep learning tools can participate in particular HS 
imaging classification problems. Finally, data scarcity is a common 
issue in vegetation or mineral studies. To enrich the databases used for 
training algorithms, we have proposed a method for the synthesis of 
realistic spectra based on generative adversarial models [9].

Geospatial data include huge volumes of ortho-rectified images 
and maps of different kinds (geographic but also political or theme-
specific). It was necessary to find ways to leverage them for training. 
For instance, we proposed the inclusion of prior knowledge from Open-
StreetMap in the learning process, thus showing the ability of neural 
networks to take advantage of heterogeneous sources of information 
[6]. We also proposed to encode the spatial shapes and relationships 
between classes through Distance Transform Regression [1]. The 
production of thematic maps often comes up against the high-level 
semantics of the expected classes. For example, in order to find solu-
tions to characterize urban heat islands from the sky, we organized a 
benchmark for Local Climate Zone (LCZ, [47]) classification, spanning 
various cities around the world. It showed that although deep networks 
are efficient for quickly producing averagely-good maps, adding expert 
knowledge with more standard approaches like boosting or random 
forests were highly valuable to obtain quality maps [51].

Perspectives
We now seek to benefit from the unexploited, unlabeled data. To this 
end, we investigate semi-supervised architectures, such as that in 
Fig. 4, able to learn image characteristics from the unlabeled images 
available for every location to regularize land-use and land-cover 
classification (urban fabric, wetlands, forests, fields) [19, 20]. A related 
topic of interest is weakly-supervised learning, to learn with unreliable 
ground-truth or classes that are not visually homogeneous [23, 21].

2	 https://github.com/nshaud/DeepHyperX

(a) RGB image (b) Composite image

(d) SegNet prediction (d) V-FuseNet prediction

(c) Ground truth

Figure 3 – Semantic segmentation

Figure 4 – BerundaNet, a multi-task neural network for semi-supervised 
semantic segmentation



Issue 15 - September 2020 - Recent Examples of Deep Learning Contributions for Earth Observation Issues
	 AL15-08	 6

Vehicle detection

Object detection in an image consists in locating all instances of the 
object of interest in an image. In this task, the input of the algorithm 
is an image, and the output is a set of locations. The quality of the 
algorithm output is measured by comparing the produced set of 
locations with the ground truth (the known set of locations of the 
objects). Although this problem seems very understandable, there 
are many ways to quantify the results, depending on the nature of 
the requested location. Classically, detection is aimed at placing 
bounding boxes on vehicles, predicting both location and scale, 
and ensuring one-to-one matching. This task allows, for example, 
vehicles to be counted.

In particular experimental settings, typically in a low-resolution con-
text or for hard-to-understand sensors, ground truth can be obtained 
by monitoring vehicles on the ground, and operators and algorithms 
are complementary. However, most of the time, humans excel at 
locating vehicles in images when the resolution is higher than 20 cm 
per pixel. Indeed, ground truth is usually obtained just by manual 
inspection of the image. Also, because humans are outstanding at 
this task, there is no qualitative advantage of using algorithms instead 
of concentrated operators.

The advantage of a detection algorithm thus lies either in the abil-
ity to automate the detection of vehicles in large numbers, or to 
improve the performance of the detection in rare modalities among 
all available remote sensing data. This task could bring a real 
technological breakthrough, notably allowing a better town plan-
ning policy and, of course, providing valuable information for intel-
ligence.

Deep learning is especially relevant for both accuracy and scalability. 
First, the performance achieved by deep learning in vehicle detection 
is at least as high as the performance achieved by other kinds of algo-
rithms, such as those described in [36, 34]. Typically, given a minimal 
set of images, designing an ad hoc detector to detect vehicles for this 
specific context is often possible.

However, deep learning is generic and incremental: it is increasingly 
accurate when fed with more training data. Then, training is just linear 
in relation to the size of the training database, and both training and 
testing are very fast on hardware like GPU cards designed for deep 
learning. In addition, we can use a shared deep learning pipeline for 
multiple purposes: typically [7] offers a way to achieve detection as 
post-processing of land cover classification.

To reach its own opinion of the results obtained, ONERA implemented 
various different architectures on different datasets. In particular, 
ONERA has developed a manually annotated database of 20,000 
vehicles on 20 cm resolution aerial images from the ORTHO HR ® 
produced by the IGN (National Institute of Geographic and Forest 
Information) in partnership with local authorities.

The first results of car detection were obtained using the approach 
described in [7], on these images. Figure 5 illustrates one example 
of detection results. We have conducted other works on Pléiades 
datasets at 50 cm resolution, or for aircraft type targets. This way, 
on highly-resolved images better than 10 cm per pixel and on large 
datasets, deep learning overrules the state of the art [7, 42] provid-
ing performances as high as 94% of F-score for [42] – 86% for [7]. 

However, today, deep learning is not sufficiently accurate to keep 
its promises with regard to classical remote sensing images (less 
than 20  cm per pixel) and, besides, suffers from a lack of large, 
structured, annotated and free datasets at this resolution.

Perspectives
More than on network architectures, it is on the development of bet-
ter-constructed large databases that efforts are expected. The simula-
tion of various scenes, including diverse targets under diverse lighting 
conditions, could also play a role in this context and help to reach that 
operational quality soon.

Change detection

Change detection is aimed at finding the changes between two co-
registered images taken at different times [35]. It is often tackled at 
the pixel level by semantic segmentation approaches. It is an exam-
ple of a dense classification problem, where we attempt to assign a 
label to each pair or sequence of corresponding pixels. Depending on 
the desired application, the assigned labels may be binary, change 
or no change, or they may contain semantic information about the 
changes that have happened, such as deforestation, urban expan-
sion, or water loss.

At ONERA, we have recently achieved state-of-the-art results in 
change detection using state-of-the-art machine learning tech-
niques. For this purpose, a dataset has been developed to train 
and benchmark various different change detection algorithms 
for change detection [22]: the ONERA Sentinel Change Detec-
tion dataset (OSCD). It contains several multispectral image pairs 
extracted from Sentinel-2 acquisitions and manually created binary 
change labels for all pixels in all image pairs. OSCD has also been 
released publicly3 so that scientists all over the world can accurately 
compare their proposed algorithms quantitatively and together 

3	 http://dase.grss-ieee.org/

Figure 5 – Detection results obtained using the approach described in [7] 
implemented through a UNet, applied over aerial photography, from IGN ORTHO 
HR ®, at 20 cm resolution. Red boxes: detection, Green boxes: Ground Truth.
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develop ever-improving change detection methods. Example results 
are given in Figure 6.

The change detection methods proposed in [27] surpass related 
methods in both accuracy and speed. They are extensions of fully 
convolutional encoder-decoder networks using skip connections and, 
most notably, a Siamese extension of a traditional encoder-decoder 
architecture using heuristics specific to the problem of change detec-
tion achieved the best results.

More recent works have pushed the boundaries of state-of-the-art 
change detection methods even further. A new dataset, called High-
Resolution Semantic Change Detection (HRSCD) dataset has been 
generated, and will also be made available to the scientific community. 
This dataset is more than 3000 times larger than any other change 
dataset openly available, and it contains high-resolution (50 cm per 
pixel) images. It contains not only change labels for all pixels, but also 
land cover information.

This dataset enables research in change detection to go much further. 
First, multitask learning was carried out using the HRSCD dataset, 
and we show that simultaneously learning to detect changes and to 
classify the terrain in the images led to better network performances 
[28]. Wea kly supervised learning techniques were also proposed 
to deal with the label noise inherent to automatically generated data 
[23]. Using a combination of iterative learning, classification filtering, 
and the newly proposed guided anisotropic diffusion post-processing 
method, an encoder-decoder fully convolutional neural network was 
trained to obtain excellent change detection performances.

Recently, given the availability of time-series, we have extended 
change detection to activity detection over a given period. The vol-
ume of available data for this specific problem is much smaller than 
for other remote sensing tasks. Indeed, in the case of optical images 
where clouds can be an issue, gathering a sequence of cloud-free 
images is much harder than finding a single image, especially in 
humid regions. The volume of labeled data for activity detection is 
also scarcer than those available for other problems, which limits the 
complexity of the machine learning models that we can use, since 
more complex models need large amounts of data to avoid overfitting.

Since Sentinel-1 (S1) radar data do not suffer from cloud cover, they 
allow for more accessible collection and processing of stacks of 
images. We have developed the REACTIV algorithm on this basis: 
by exploiting the particular statistical properties of the radar images, 
the algorithm allows us to obtain unmatched change detection per-
formance, superior to that obtained by the previous supervised deep 
learning approach applied to the same scenario, but on optical Senti-
nel-2 images [25]. We have evaluated these performances on a set of 
data from the Saclay plateau, chosen for a large number of construc-
tion sites present during the analysis period.

Perspectives
On the one hand, we have developed a very robust change detection 
algorithm with the exploitation of SAR time-series, but the interpreta-
tion of the change remains difficult using this data. On the other hand, 
thanks to the optical-imagery datasets that we released for the com-
munity, deep networks for change detection have emerged [27, 43]. 
However, a more massive dataset could improve results still further. 
Therefore, our next efforts will be devoted first to improving database 
creation by using robust automatic detection on radar images to select 
change key positions in optical images. Then, we will investigate more 
sophisticated and accurate deep learning methods for semantic change 
detection and high-resolution change detection based on time-series.

3D Sensing and Estimation

Obtaining 3D data through imaging is an area where the traditional deep 
learning used for image processing does not apply directly. However, 
we have invested in this area by using our expertise in the conception 
and processing of data from advanced sensors. Two areas of research 
concern machine learning for 3D: LIDAR and SAR data fusion for 3D 
forest structure studies; and 3D model estimation from the sky.

The goal of [14] is to predict the structural parameters of forests on 
a large scale using remote sensing images. LIDAR and polarimetric 
interferometric SAR sensors are both interesting for estimating for-
est biomass. However, if LIDARs offer excellent vertical accuracy, 
they suffer from their lack of spatial coverage. On the other hand, 
SAR systems have extensive coverage and ground spatial accuracy, 
but reduced vertical precision. Therefore, the approach is to extend 
the accuracy of LIDAR full waveforms to a larger area covered by 
polarimetric and interferometric (PolInSAR) synthetic aperture radar 
images using machine learning methods.

We proposed in [14] a set of PolInSAR parameters, computed for 
each pixel, which is likely to have strong correlations with the LIDAR 
density profiles on forest stands. These features were used as input 
data to learn a set of forest LIDAR features: the canopy height, the 
vertical profile type, and the canopy cover. The approach has investi-
gated several methods of machine learning for this purpose:

•	 Random forest methods for class classification of vegetation 
profiles.

•	 Classical SVN methods, then perceptron methods for estimat-
ing canopy height, and canopy density.

•	 Finally, CNN methods were also tested for estimating canopy 
height.

In the latter case, the results were not better than those obtained with 
other traditional machine learning methods. The small number of data 

	 	

	 (a) Image 1	 (b) Image 2

	 	

	 (c) Change map	 (c) Estimated change map

Figure 6 – Example of a satellite image pair of Las Vegas, true change map 
and estimated change map using a convolutional neural network
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in the learning base can explain this. Also, the chosen input was not 
a simple vector, but was transformed into a two-dimensional space 
and interpreted artificially as an image, even though it does not corre-
spond to real objects but rather to pure mathematical representations 
used to feed CNN networks.

Nevertheless, perceptrons give very encouraging results. Neural net-
works give the best performances in terms of RMSE on the estimated 
tree heights, as represented in Fig. 7, and they are the most faithful on 
the fidelity of the estimated statistical distributions, as shown in Fig. 8.

This work has also demonstrated the importance of the choice of 
input descriptors: the performances are better with descriptors 
judged to have the most physical meaning. This work makes us think 
that deep learning allows increased performance, but not necessarily 
based on images, even if we acquired the data in that way.

A second axis consists of scene understanding from standard 
optical imagery. Additionally to semantics (see Sections 5 and 6), 

providing the local height, for example, as with Digital Surface Mod-
els (DSMs), is useful for many applications, such as urban planning, 
telecommunications, aviation, and intelligent transport systems. 
Multi-view stereo [30] was the means of choice to obtain these 
products, but today deep learning approaches also offer competi-
tive performances [37]. We address this problem by using a Multi-
Task Learning (MTL) deep network that estimates both height and 
semantic maps simultaneously from a single aerial image [18]. Our 
approach is built on powerful models that we developed previously 
for depth prediction from a single image taken from the ground [17].

Precisely, we adapted D3-Net [17] to a multi-task architecture by add-
ing a semantic classification decoder to the original depth estimation 
one. As shown in Figure 9, the contractive new decoder layers are 
common to both semantics and height estimation. On the contrary, 
layers of the decoders are specific for each objective and generate, 
respectively, as many channels as classes for semantics and one 
channel for height. We have evaluated each output with a correspond-
ing loss function: we have adopted the absolute error (L1) for height 
regression and the cross-entropy loss (LCE) for semantics evalua-
tion. We have also implemented various mechanisms for multi-task 
optimization, such as Grad-Norm [24].

Figure  10 shows maps generated from the 2018 Data Fusion Con-
test (DFC2018 [49]) dataset. In general, the network produces nearly 

skip-connections

conv7x7(s=2)+BN+relu x n)BN+relu+conv1x1
BN+relu+conv3x3

BN+relu+conv3x3

conv4x4(s=2) BN+relu+conv4x4(s=2)
BN+relu+conv3x3

average pool (s=2)
BN+relu+conv1x1

Figure 9 – Architecture of our MTL model for height regression and 
semantic classification. On the left most layers share parameters 
between all tasks and on the right most layers are task-specific.

Figure 10 – From left to right, input RGB image, semantic ground-truth and prediction. Black represents no information. Height ground-truth and 
prediction evaluated for DFC2018 data over Houston.
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For other more exotic applications, such as multitemporal change 
detection, LIDAR to radar data transfer for biomass estimation, and 
3D estimation, deep learning methods are being developed. The first 
results are encouraging and prove the feasibility of the methods. 
Thus, today, it seems that the contribution of deep learning no longer 
needs to be demonstrated. The expected gains in the future relate 
mainly both to the development of new architectures or new learning 
schemes and to the way of forming the learning base.

Hence, future expectations will focus on topics that are absent today 
from computer vision: for example, the taking into account of com-
plex signals such as SAR images, multimodal data, sparse data such 
as hyperspectral images. Moreover, taking into account the physics 
knowledge or the part of the signal that is useful for the intended 
application seems to be essential and seems essential to the quality 
of the result.

The other issues concern the organization and constitution of data-
bases. This point is a real difficulty. To obtain annotated databases, in 
the case of the web, we can count on the annotations of millions of 
users. In remote sensing, this is not the case. Not to mention the diffi-
culties due to data that are confidential and cannot necessarily benefit 
from these public platforms. The number of data is not necessarily 
the most limiting factor: in fact, the images have large dimensions 
of several tens of thousands of pixels, which makes it possible to 
process them in a large number of smaller images. Also, a promis-
ing avenue is to use approaches that mix supervised learning with 
unsupervised learning.

However, in any case, it is be necessary to rely on the development 
of dedicated platforms, and their capacity to interface with the data 
processing cloud type deep learning, as well as to ingest data from 
various sources of geographic information, to benefit from all of the 
advances of this sector of machine learning 

accurate heights for ground, residential buildings, and vegetation, while 
some structures are more challenging, like high buildings or stadiums. 
Indeed, these classes in bird-view images have various shapes, colors, 
and heights, which make precise estimation difficult. We can note that 
semantics are detailed, with dense cartography even when the ground 
truth labeled only a few objects. Following Section 5, we have shown 
that multi-task learning allows performance to be improved for both 
tasks, or in other words, that simultaneous height estimation helps 
classification considerably.

Perspectives
Our works on the prediction of biomass will continue through the 
scaling-up of this kind of algorithm by using future satellite mis-
sions, such as BIOMASS, Tandem-L, or Ni-SAR. Height-estimation 
deep networks are only one example of a network able to translate 
one modality into another: predictors of LIDAR-like point-clouds or 
SAR-processing networks are also on our agenda. To this end, the 
understanding of the physics behind the sensor benefits from every 
bit of available information to build a better 3D estimate. More gener-
ally, the estimation of the 3D structure with precise levels of detail 
using a variety of sensors is a crucial step for creating models of 
the world that enable environmental sustainability or development of 
smart cities.

Conclusion

This paper provided an overview of the performance gains obtained 
today in remote sensing through the use of deep learning techniques. 
It has demonstrated significant gains in the areas closest to those 
of computer vision: classification and detection of vehicles in optical 
images. They are probably the most impressive results because more 
effort has been made, and also because the transfer of techniques 
from computer vision to remote sensing is more comfortable to do.
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