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Introduction

Photometry and photogrammetry are the two main image-based 
methods for measuring physical quantities. In photometry, the pa-
rameter investigated is a function of the intensity level: an example is 
the measurement of pressure on the surface of an object in a wind 
tunnel by means of Pressure Sensitive Paint (PSP). In photogram-
metry, we are  interested in the shape of some image patterns or in 
their apparent motion from one image to the other so as to measure 
geometric quantities such as distance, velocity, strain, etc.; classical 
examples are Model Deformation Measurement (MDM) and Particle 
Image Velocimetry (PIV) (see the other contributions on these tech-
niques in this issue).

This paper looks at photogrammetry, and focuses on the measure-
ment (or estimation) of displacement fields from image sequences. 
Estimation problems like these occur in the experimental study of fluid 
dynamics via dedicated imaging techniques such as Laser Tomos-
copy and PIV and also in experimental characterization of strain on 
solids. These techniques, which are related to the domain of image 
motion or optical flow estimation in computer vision, are the subject 
of Onera’s research project MEMFIS which associates computer vi-
sion specialists with physicists from fluid mechanics and materials 
science.  

Following on seminal work dating back from the 80’s [1, 2], mo-
tion estimation in computer vision is now rapidly developing again 
under three main driving forces: (i) the renewal of the methodological 
framework – notably physically sound regularization models tailored 

We present recent developments in data processing for velocity field estimation and 
visualization originating from computer vision. We review the current paradigm of 

PIV data processing, based on window correlation, and the regularization or variational 
approach which is dominant in optical flow estimation. We propose a novel unifying 
framework via the optimization of a compound regularized criterion written in terms of 
a dense displacement (or velocity) field. The paper then focuses on algorithmic issues. 
A fast iterative window correlation method leading to a highly parallel algorithm termed 
FOLKI is described. Thanks to a GPU (Graphical Processing Unit) implementation, FOL-
KI reaches video rate for typical PIV data. Then we present more sophisticated solvers 
able to deal with the regularization term of the criterion, notably multigrid methods. 
In our view, these two components form the foundation of a video rate velocity field 
visualization and interpretation toolbox which, together with recent advances in experi-
mental apparatus and numerical simulation, opens the way to a major development in 
experimental fluid science.

for fluid dynamic, see § “Regularisation framework for displacement 
field estimation”; (ii) assimilation of the applied mathematics corpus 
into the estimation algorithm (i.e. multi-grid methods [3], sub-domain 
decomposition, etc.); (iii) technological advances in generic comput-
ing hardware, notably the development of one-chip massively parallel 
architectures, such as multi-core CPUs and GPUs.

These recent developments are still widely ignored in the PIV com-
munity. This paper is one of a series of recent initiatives that the com-
puter vision community has taken in the field of PIV [4, 5]. Contrarily 
to most of these works it emphasizes the points (ii) and (iii), i.e. al-
gorithm and architecture for fast computation of the displacement 
field. Indeed, we believe that computational efficiency is the key to the 
spread of methodological advances on fluid displacement estimation 
and interpretation within the PIV community, for two main reasons:
	 1. advances in experimental PIV (Time Resolved PIV, 3D tomo-
graphic PIV) yield a huge data flow to be processed;
	 2. advanced processing methods usually come up with more tun-
ing parameters, whose influence is often more difficult to predict, so 
their use requires a high level of interaction with the user.

The rest of the paper is divided in three parts: the firt one formulates 
displacement field estimation within a general regularization frame-
work and presents the main algorithmic issues, the second one fo-
cuses on fast window-based estimation algorithms, then we briefly 
presents algorithmic trends for solving the large non linear systems 
yielded by regularized approaches. To conclude remarks and pros-
pects are gathered together.
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A regularization framework for displacement field 
estimation

PIV and interrogation windows

Fundamentally, in PIV or in other fields where image velocity is re-
quired, such as video coding or optical flow estimation in computer 
vision, the problem at hand is to estimate a displacement field d (x) 
from two images I (x, t1 ) and I(x, t2 ) – velocity is derived from the 
time interval  t2 – t1 between images. At this point, most authors in PIV 
introduce the notion of an “interrogation window” (IW), i.e. a square 
area containing a certain number of particles (say 10) that form some 
random pattern that can be detected and localized in the next image. 
This search leads to a displacement vector which is attributed to the 
center of the interrogation window. The size of the interrogation win-
dow is the main parameter of this approach: it defines the resolution 
of the result, i.e. the spatial sampling of the estimated displacement 
fields (typically half the IW size). Moreover, the window size tunes 
the “bias versus variance” trade-off of the estimation process. Larger 
windows lead to smoother estimated fields. The variance of the esti-
mation error is lowered but so are small-scale motions, which means 
a bias toward the constant displacement field. There are of course 
several developments in modern PIV software that improve on this 
trade-off: image preprocessing, iterative window refinement, vector 
field post-processing, etc. The concept of an interrogation window 

still influences and, as we will try to demonstrate here, essentially 
limits the development of innovative PIV processing.

Modern optical flow and regularization

Modern optical flow estimation starts from a more abstract problem: 
if I (x,t) is the image intensity at position x and time t and assuming 
that the recorded images correspond to time instants t1 and t2, the 
problem can be expressed as the search for a displacement field d (x) 
which satisfies the so-called image registration condition

1 2( , ) ( ( ), ),I x t I x d x t x= + ∀  			                 (1) 
		
In practice, this condition is relaxed by searching the peak of the 
cross-correlation or by minimizing the least-square criterion

( )21 2( , ) ( ( ), )
x

I x t I x d x t− +∑ 			                 (1b)

see box 1. This image registration problem is in general indetermi-
nate: very different and often “non-physical” displacement fields lead 
to a low criterion. Indeterminacy stems from two facts: (i) being a 
scalar equation of a 2D unknown vector, the registration condition 
clearly yields less than half the number of equations that would be 
necessary; (ii) moreover, the recorded images are blurred, noisy and 
sampled versions of the image intensity, which means that only an 
approximation of the registration criterion (1b) is computable.

Box 1 - Optical flow and optical flow

The term “optical flow” has various meanings depending on the domain and context. In the PIV community, optical flow is often associa-
ted with the work of Quénot et al. [25]. This is an unfortunate confusion, because [25] describes a particular technique based on window 
correlation and dynamic programming, two elements which depart notably from the vast majority of optical flow estimation methods in 
computer vision. A much more “main-stream” application of optical flow to PIV can be found in [4].
Optical flow is also often associated with a first order expansion of the registration condition (1) for small motion d and time interval 

2 1–dt t t= :   

 ( ) 0tI I d
t
∂

+ ∇ =
∂

                                                                                                                                                                       (I.1)

This so-called “optical flow constraint” (OFC) is central to historical references on optical flow such as the work of K.B. Horn and B. 
Schunck [1], and is still used in several recent references such as [10]. However, OFC is valid only for very small displacements and 
since the end of the 90’s, many authors have proposed that the more general condition (1) should be considered to deal with large 
displacements. The expression “modern optical flow” which is used in the text refers to this large displacement context which is, in our 
opinion, the right framework for PIV processing.
Let us emphasize that the main difference between (I.1) and (1) is that the latter is non linear with respect to the displacement field. To 
deal with the non linearity, the estimated field is iteratively refined, by means of a first order development of (1) around a previous esti-
mate 0d . Writing 0d d dδ= + , the flow increment satisfies a first-order condition which is similar to the OFC constraint:

( )0 2 1 0 2( ( ), ) ( , ) ( ( ), ) 0tI x d x t I x t I x d x t dδ+ − + ∇ + = 				                                                                                                                    (I.2)
Hence classical optical flow approaches based on the OFC often appear inside the iterative process of modern “large displacement” 
optical flow estimation.
Finally, we should discuss implementation issues, related to the fact that the images are recorded on a square grid of pixels positions.
 Assuming, without loss of generality, that the sampling step is 1, equation (I.2) is written for discrete positions m, associated with pixels 
of image I (m, t1). However, (I.2) also includes values of image I(m, t2 ) for real positions such as m+ d0 (m) which are shifted by the 
initial displacement field 0d . The resulting image m  I (m + d0 (m) , t2 ) is a warped version of I (m, t2). In image processing, warping 
an image I (m, t2 ) consists in interpolating its values on real warped positions by means of a spatial interpolation, using for instance a 
kernel-based interpolation such as

( , ) ( ) ( , )
m

I x t x m I m tγ= −∑
											             (I.3) 

This interpolated image is also used to define the spatial gradient values required in (I.2).



Issue 1 - December 2009 - Advanced Processing Methods for Image-Based Displacement Field Measurement
	 AL01-04	 3

The classical answer to such ill-posed problems is regularization [6]. 
It consists of complementing the data with prior information on the in-
vestigated object, here the displacement field. In the line of the works 
of Philips-Twomey-Thykonov in the 60-70’s (see references in Chap-
ter 1-2 in [6]), this information is often expressed as a constraint on 
some derivative functional of the displacement field ( )f d . For optical 
flow estimation, a popular choice is the Horn and Schunck regular-
izing functional [1]:

2 2( ) , [ , ]u v u vf d d d for d d d= ∇ + ∇ =                              (2)

The estimated displacement field is then defined as the minimizer of a 
regularized criterion such as:

( ) ( )2
1 2( ) ( ( , ) ( ( ), )) ( )J d I x t I x d x t dx f d dxψ λ= − + + Φ∫ ∫       (3)

where ψ  and Φ  are potential functions, and λ = is the regularization 
parameter. The simplest choice is the quadratic penalization, associ-
ated to trivial potentials 2 2 2( ) ( )s s sψ = Φ = . Such approaches are 
often termed “variational optical flow estimation” in recent papers 
such as [4, 7]

Qualitative comparison on a real PIV dataset

Box 2 presents a comparison of estimated displacement fields on 
the central (512 x 512) part of images 25-26 of the PIV Package3 
dataset of the European interdisciplinary FLUID project [5]. This pack-
age is made of experimental PIV images of a slightly turbulent air flow 
seeded with small water droplets: see one frame in figure B2 - 01.
The left part of figure B2 - 02 shows the estimated displacement field 
using a window-based method. It is derived from the dense window-
based algorithm FOLKI, which is the topic of Section 3. Except for the 
density of the estimated field (one vector per pixel), this result is a 
typical output of current PIV software. On the right is the result of the 
minimization of regularized criterion (3) with regularizing functional 
(2). In other words, this variational optical flow estimate does not use 
any interrogation window; the goodness-to-fit term is simply a pixel-
wise registration criterion. As can be seen, despite their very different 
rationales both approaches give similar results with this example.
Finally, figure B2 - 03 presents several results for varying parameters. 
The four fields on the top line are estimated using the window-based 
method with a Gaussian weight function of standard deviation 4, 6, 12 
and 26 from left to right. The four fields on the bottom line are derived 
from the minimization of (3) with regularizing functional (2) and four 
different choices of the regularization parameter ( λ =  100, 1000, 
1.104, 3.104, from left to right). Except for the two estimates on the 
left, which exhibit large errors, all other reconstructions appear cor-
rect. Looking at the various degrees of smoothness of the estimates, 
it should be clear to the reader that the regularization parameter in (3) 
plays a role similar to the window size in the aforementioned “bias vs. 
variance” trade-off: the higher λ =, the smoother the solution.
The window-based approach then appears as a form of spatial regu-
larization, which assumes that the motion field is constant at the scale 
of the interrogation window. As always, this regularization principle is 
only approximately true – actually it is absolutely wrong near regions 
of high velocity gradient, such as a vortex center or other disconti-
nuities. Note, however, that the Horn and Schunck functional (2) is 
not particularly well suited to fluid dynamics: it has been noted, for 
instance in [8], that it leads to underestimation of the velocity near a 
vortex.

A unifying framework

As already noted by [4], the real advantage of the optical flow ap-
proach is its versatility. Contrarily to window-based approaches 
which all rely on the same regularization principle, modern optical 
flow techniques use various regularizing functionals f and various 
potentials ψ  and Φ , which opens the way to completely different 
estimators [7] and in particular to techniques tailored for the particu-
lar situations of fluid dynamics [8,9,10,22,24].
In our view, regularization appears here as the expected interface 
between experimental and numerical studies, because choosing the 
right regularization tool is essentially a matter of modeling the phe-
nomenon being studied. However, we will not discuss further the de-
sign of such regularization tools, and turn toward the essential prob-
lem of the computing the estimates. In order to do so, let us introduce 
a generalized version of (3), where the registration criterion includes 
a local window. Defining the weighted average of squared intensity 
differences
 ( )21 2( ) ( ) ( , ) ( , ) , ( )D d,x w x - y I y t I y d t dy x,dρ= − + ∀∫       (4)
using the normalized and separable (i.e. isotropic) Gaussian kernel 
wρ  of standard deviation ρ , this unifying regularized criterion is 
written:

( ) ( )( ( )) ( ( ), ) ( ; )J d D d x x dx f d I dxψ λ ϕ⋅ = +∫ ∫                        (5)

Convolution of the squared intensity difference with a Gaussian kernel 
introduces a spatial integration of the registration criterion over the 
essential support of wρ . Such a criterion is a generalization of the 
CLG approach of Bruhn et al. [3] to the large displacement context. It 
unifies a window-based approach ( ρ  typically around 16 pixels and 
λ = 0) and a regularized criterion like (3) ( 0 and 0)ρ λ→ > . Note 
also that the regularization functional f  in (5) depends on the image 
intensity I: indeed, some authors use the local image gradient to tune 
the regularization (it is called “image driven regularization” in [7 ]).

In the sequel we focus on numerical methods for fast optimization of 
criterion J of (5) with respect to the dense vector field d for various 
values of ρ and λ =. Next section will discuss the optimization in the 
case 0λ = , and the final part of the article will discuss current ap-
proaches for the general case.

Window-based estimation of dense velocity fields at 
video rate

Introduction

In this section, we consider the optimization of (5) for  0λ = . As 
there is no longer a regularization term in this case, the optimization 
boils down to a separable problem where each vector of the field 
is sought in order to minimize a local registration criterion, spatially 
integrated on a local window whose extension is given by the shape 
of the weight function wρ . This approach belongs to the paradigm of 
window-based methods that underlies commercial PIV software and 
has been reviewed in previously. The main difference lies in the op-
timization process. The proposed iterative process, described in the 
following section and box 3, allows for fast computation of a dense 
field, whereas FFT-based PIV software yields under sampled vector 
fields, typically by a factor of 16 on each dimension (considering for 
instance an interrogation window size of 32*32 pixels with 50% over-
lap between adjacent windows, which can be a standard setting in 
PIV campaigns).
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Box 2 - Estimation with window-based and variational methods on real PIV data

Figure B2 - 01. One image of the dataset “Package3” from the FLUID project [5]: experi-
mental PIV on a slightly turbulent air flow seeded with small water droplets. Only the cen-
tral part (512 x 512 orange square) of the motion field has been computed in the sequel.

Figure B2 - 02. Results of displacement field estimation for two images of the dataset “Package3” from the FLUID project [5]. Norm of the field in color 
(see color map) Left: window-based dense approach (algorithm FOLKI, see Section 3) with a Gaussian window of standard deviation 12.  Right: varia-
tional approach, estimation obtained by minimization of criterion (3) with Horn and Schunck’s regularizing functional (2) and a regularization parameter 
λ = 1000. Note the similarity between both methods, despite their different rationale.
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Figure  B2 - 03 - Results of displacement field estimation for two images of the dataset “Package3” from the FLUID project [FLUID]. Top: norm of the 
optical flow estimated using a window-based dense approach with a Gaussian window of standard deviation 4, 8, 16 and 32 (from left to right). Bot-
tom: norm of the estimate obtained by minimization of the regularized criterion (3) with regularizing functional (2), regularization parameter set to 100, 
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Box 3 - Iterative window registration

The cross-correlation function ( )R d  associated with the search of an interrogation window W  from image ( )1,I x t to image ( )2,I x t  
was defined in [21, box 1]. It is usually computed all over a grid of possible displacements d so as to find a maximum. Here, we use a 
quadratic distance between interrogation window intensities (sometimes weighted by a window profile w ):

	 ( )2 2 2
1 2 1 2( ) ( ) ( , ) ( , ) 2 ( ) ( )t tm

A d w m k I m t I m d t E R d E d= − − + = − +∑                                                                                  (III-1) 

An example of registration criterion A is represented in Figure B3 - 01 - a  for integer displacements d. In general, the energy of the image 
integrated on a window is approximately stationary and A varies as the opposite of the cross-correlation function R.
In this work, we first consider all possible real-valued displacements d: The registration criterion A is then written in terms of an interpo-
lated image defined in Box 1, equation (I.3). Figure B3 - 01 - b shows that the criterion A appears as a smooth surface, whose maximum 
is sought using an iterative optimization algorithm. The Gauss-Newton iterative scheme, sketched in Figure B3 - 01 - c  in the 1D case, 
is derived from a first order development of the residuals appearing in (III-1) in 0d d dδ= + . Around 0d , the criterion is approximated 
by a quadratic function

	 ( )2t
0 2 0 1 0 2( ) ( ) ( , ) ( , ) ( , )

m
Q d w m k I m t I m d t I m d t dδ δ= − − + −∇ −∑  

                                                                                         (III-3) 

whose minimization yields the new estimated displacement d1. It is interesting to derive another form of 0Q :

	 t t 0 2
0 0 0

1 0 2

( , )
( ) [ 1] , ( ) ( ) ( ), ( )

1 ( , ) ( , )m
t

d I m d t
Q d d H H w m k q m q m q m

I m t I m d t
δ

δ δ
   −∇ +

= = − =    − +   
∑



                                                (III-4) 

From (III-4) it is clear that the Hessian matrix 0H only depends on spatio-temporal derivatives of the image intensity integrated on the 
chosen window support.

Figure B3 - 01 - Gauss-Newton iterative strategy : the registration criterion A 
is approximated by a quadratic function  iQ around the current estimate of the 
displacement jd . Minimization of  iQ leads to the next estimate 1jd + . This 
process is iterated until a stationary point, corresponding to a local minimizer, 
is reached.
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Local search by iterative optimization

As detailed in Box 3, the search for the matching window is con-
sidered to be the iterative optimization of a nonlinear least squares 
registration criterion. The usual Gauss-Newton iterative optimization 
process relies on successive local quadratic approximations of the 
criterion. Since its introduction into computer vision by Lucas and 
Kanade [2], numerous contributions have concerned improvements 
of this scheme. The most significant development is conducting the 
search in a multi-resolution framework. These iterative and multi-
resolution techniques are capable of fast window registration with a 
good accuracy, typically less than the tenth of a pixel, even when the 
true displacement is large, for instance equal to the window size [11]. 

Parallel Implementation for dense estimation

The previous iterative approach provides 2C velocity fields whose 
quality is similar to that obtained with classical FFT-based cross-cor-
relation peak detection techniques. But the true advantage of such ap-
proaches is their highly parallel structure, when combined with dense 
estimates. Let us apply the Gauss-Newton strategy simultaneously to 
all local registration criteria whose sum forms the global criterion J 
of (5) with 0λ = . This global iterative scheme uses an approximate 
quadratic criterion which is the sum over all pixels of the quadratic 
forms given by (III-3 and III-4) in Box 3. Updating the whole field 
simply amounts to solving NxN independent  2 x 2 systems each 
one with a Hessian matrix given by in (III-4). A remarkable result is 
that in a dense framework, the coefficients of all these systems can 
be computed simultaneously by 2D linear filtering of the images; es-
sentially differentiation on the pixel scale and integration on the win-
dow scale, as shown by the form of the Hessian matrixes in (III-4) of 
Box 3. This result has been known for years in the case of an initial 
null displacement, and has been generalized to further iterations in a 
recent paper [12]. This yields an algorithm christened FOLKI (for Flot 
Optique Lucas-Kanade Iteratif), which, on a conventional architec-
ture, can compute a dense field for a computational cost equivalent to 
the computation of a 16 times under sampled field with the classical 
FFT-based cross-correlation.

The structure of FOLKI is ideally suited to massively parallel archi-
tectures like GPUs (Graphics Processing Unit). Boosted by the video 
games market, graphic units have become cheap, ubiquitous and 
powerful parallel co-processors. FOLKI has been implemented on a 
GPU this year [20], leading to performances unchallenged by previ-
ous techniques: the processing of a 1000 x 1400 pixel PIV image pair 
requires less than 30ms. This performance means that a typical PIV 
data set (1000 PIV pairs, each 2000 x 2000 pixel) can be processed 
in a few minutes. One interesting result is that the computational gain 
of FOLKI-GPU compared to an implementation on a classical CPU 
architecture increases with the image size. Table 1 below shows the 
computing time per-pixel on FOLKI for increasing image sizes. FOLKI-
GPU yields a gain of a factor 10 for small (512 x 512) images but the 
factor reaches 100 for large (4096 x 2048) images. More informa-
tions on the FOLKI-GPU algorithm, including a downloadable open 
source software (under L-GPL license), can be found on the website 
www.onera.fr/dtim/gpu-for-image, which is dedicated to image and 
vision applications of GPU computing.
These unchallenged performances open the way to on-the-fly PIV 
processing inside fluid flow visualization and interpretation software. 
A video of the results obtained in real-time with FOLKI on dataset 

“Package3” from the FLUID project [5] is provided on the previously 
mentioned website.
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Figure 1 - Computing time per-pixel of FOLKI for increasing size of images. 
Comparison between computing time on a classical CPU architecture and on 
a GPU architecture.

Extension to Stereo PIV 

The regularization framework presented before also provides a direct 
formulation of the Stereo PIV problem [13][14]. Stereo PIV uses the 
simultaneous acquisition of “left” and “right” PIV images in a stereo-
scopic setting to recover the out-of-plane velocity component. The 
classical technique consists of separately estimating velocities in 
each image plane (using one of the previously described techniques), 
then combining these two 2C estimates to estimate the 3C velocity 
V. We have recently proposed a direct formulation of the estimation 
of V [15]. This formulation introduces a nonlinear least squares cri-
terion that cumulates the registration errors associated with left and 
right images. The resulting criterion is a simple generalization of J in 
(5) (with λ = 0) which involves the four PIV image intensities, the 
3C velocity V , and projection matrices for left and right cameras 
derived from the geometric calibration of the system. Such a direct 
formulation is interesting because it makes use of the epipolar geom-
etry during the correlation step to constrain the search domain and 
remove potential ambiguities. Moreover, the overall Gauss-Newton 
iterative multi-resolution scheme introduced for 2C estimation is en-
tirely transferable to 3C estimation.

Toward fast global regularized estimation

Introduction

We now consider the problem of the optimization of (5) in the general 
case where λ >0. Because of the regularizing functional f, typically 
made of spatial derivatives of the displacement field, the problem is no 
longer separable. In other words, in an iterative optimization scheme, 
based on successive linearization of the registration term following 
equation I-2 in Box 1, the system which has to be solved at each itera-
tion is no longer diagonal (or 2x2 block diagonal, like the one in § “Lo-
cal search by iterative optimization”) but involves a 2Nx2N matrix. In 
general the optimization of such a non linear coupled criterion of around 
2 million variables would be a formidable, if not intractable, task. Two 
elements simplify the problem: (i) the non linearity of the registration 
term can be dealt with in a multi-resolution framework, see next section  
and Box 4; (ii) inside an iteration of the algorithm, efficient multigrid 
solvers can be used thanks to the structure of the linearized problem. 
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Multi-resolution estimation

Multi-resolution estimation is closely linked to the theory of scale-
space in computer vision and image analysis [16]. It consists in as-
sociating with an image a one-parameter family of smoothed images 
(the “scale-space representation”) parameterized by the size of the 
smoothing kernel used for suppressing fine-scale structures. The 
most popular smoothing kernel is the 2D separable Gaussian kernel 

( )g xσ , which is parameterized by its standard deviation σ . The 
resulting representation can be written as ( ; ) ( )( )I x g I xσσ = ∗ . 
As the spectral content of I (x,σ =2) is halved in both directions with 
respect to the original image, it can be represented with sampling 
periods twice the original ones, i.e. using / 2x / 2N N  coefficients 
if the original image was discretized on xN N  pixels. We then get 
a pyramid of images ( ){ }( )jI x by setting ( ) ( ) ( )0  I x I x=  and re-
cursively convolving by 2g  and down-sampling the previous image, 
the level j image ( )jI  being discretized on j j/ 2 x / 2N N  pixels if the 
original ones was xN N . A discrete version of this so-called Gauss-
ian pyramid has been proposed in 1983 by Burt and Adelson [17], an 
example on a PIV image is presented in Box 4.
The rationale for such a redundant representation is the fact that 
several phenomena of interest in image and video analysis (edges, 
segments, motions, etc.) have a characteristic scale. Analyzing the 
image at this particular scale, by using the corresponding image in 
the chosen scale-space representation, gives better detection of the 
phenomenon. For instance, in motion estimation, large displacements 
are usually easier to estimate on coarse scale images. From a theo-

retical point of view, Lefébure and Cohen showed that the registration 
of coarse-scale images yields a criterion “more convex” than the reg-
istration of the original fine scale images [18].  The multi-resolution 
estimation scheme then consists in a coarse-to-fine refinement of 
the estimated motion. Using for instance the Burt-Adelson Gauss-
ian pyramid, we initialize the estimated displacement by the null field 
at level J, registers ( ) ( )1

1,jI x t−   and ( ) ( )1
2,jI x t− estimate a first 

displacement field ( )Jd . Transition to the next finer scale consists 
in up-sampling and magnifying the estimated field by a factor 2 to 
initialize the registration of ( ) ( )1

1,jI x t−  and ( ) ( )1
2,jI x t−  – usually 

this initialization is done by warping one of the images (the warping 
operation is explained in box 1, Eq. (I.3)). This process is reiterated 
until the original ( ) 0j =  resolution level is reached.
An example of multi-resolution estimation is given in box 4. 
Figure B4 - 01 compares the displacement field obtained with a multi-
resolution process on the left to the one obtained with multiple it-
erations at the original resolution level on the right. The latter field is 
presented with a scale factor of 50 on the vectors, which are largely 
under estimated and appear trapped in several local minima of the 
registration criterion. The multi-resolution process avoids these min-
ima and yields a correct flow. Note that recently Ruhnau et al. [4] 
have proposed a true multi-scale estimation process, using not only 
the reduced images of the Gaussian pyramid, but also intermediate 
smoothed images ( , )I x σ . According to this reference, this approach 
is particularly beneficial for PIV image processing, because PIV imag-
es are usually very spiky and, even using a multi-resolution scheme, 
one could be trapped in a local minimum.

Box 4 - Multi-resolution coarse-to-fine scheme

We present experimental evidence about the benefits of a coarse-to-fine multi-resolution scheme for estimating displacement fields in 
PIV. We first compare the results obtained with a multi-resolution scheme and those obtained with iteration at level 0, i.e. by working 
directly on the original image resolution. As can be seen in the right part of Figure B4 - 01, the latter strategy leads each vector to the 
closest local minimizer.

Figure B4 - 01 -  Comparison of estimated displacement fields with the FOLKI window-based algorithm (Gaussian weight function with standard devia-
tion 12) on 2 images of the dataset “Package3” from the FLUID project [5]. Left: result of a multi-resolution scheme, 3 resolution levels, 2 iterations on 
each level, vectors magnified by a factor of 2; right: result of 4 iterations at level 0, vectors magnified by a factor of 50.

Then we present intermediate results (only their norm is shown) for three levels of a multi-resolution coarse-to-fine strategy, in front of 
the corresponding sub-sampled image. The main motions are already correctly estimated on the level 3 (128 x 128) result. At this scale, 
the maximum displacement is 2 pixels. This estimate is up-sampled and multiplied by a factor of 2 and then refined at resolution level 2, 
while descending the resolution pyramid until the original scale (not shown here) is reached.
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Figure B4 - 02. Three steps of a multi-resolution coarse-to-fine estimation on 2 images of the dataset “Package3” from the FLUID project [5]. Top: image 
pyramid, from left to right, level 3, 2, 1). Bottom: estimated displacement field norm, window-based FOLKI method with Gaussian weight function of stan-
dard deviation 12. From left to right, intermediate results at level 3 (norm max = 2) , 2 (norm max = 4), 1 (norm max = 8).
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Efficient solvers for the internal linearized problem

As already mentioned, at each iteration of the optimization, an internal 
linearized problem has to be solved, with a very large Hessian matrix 
made of blocks with a diagonal band structure defined by the chosen 
regularizing functional. Most regularizing functionals imply low-order 
derivatives and lead to short-range interactions between pixels. For 
instance, using the Horn and Schunck functional (2) and a quadratic 
regularization, the stationary equations for the 1D case take the fol-
lowing form:

1 12
0

2
k k k

k
d d d

ad b k
h

− +− +
+ + = ∀                                          (6)

In 2D this model only involves the 4-nearest neighbors of each pixel. 
The Gauss-Seidel (GS) algorithm (and variants like Jacobi or SOR 
techniques) is a simple and popular solver for these problems. GS 
is essentially a pixelwise updating scheme: for each pixel, the dis-
placement kd  is updated by solving (6) with all other displacements 

,ld l k≠  fixed. The whole algorithm repeats several sweeps on the 
image.

The GS algorithm is considered to be an efficient smoother. In Ad b=
linear problems, with local dependencies such as (6), GS is very effi-
cient at reducing the high frequency part of the error – in other terms, 
if *d  denotes the exact solution, d0 an initial estimate and 1d  the  
output of a GS iteration, *

1 –d d  has a lower frequency content than
*

0d d−  , i.e., it is smoother. Conversely, short-range dependencies 
mean that GS is very slow in propagating the low-frequency com-
ponents of the solution. A large number of sweeps are required to 
achieve a correct convergence.

The logic of multigrid (MG) [19] methods is to use a smoother such 
as GS but at coarser scales. Indeed, working at coarse scale acceler-
ates the propagation of low-frequency characteristics by GS. More-
over, as problem dimensions are reduced at coarse scales, running 
the GS algorithm is also cheaper. Therefore, MG methods are theoreti-
cally the most efficient techniques for elliptical PDE.

Multigrid methods should not be confused with the multi-resolution 
estimation process. Multi-resolution estimation deals with the non 
linearity of the registration criterion with a coarse-to-fine strategy. 
Multigrid methods are used to speed up the resolution of the linear-
ized sub-problems and use various cycles on the resolution levels (or 
scales), not only coarse-to-fine: see Box 5.

MG methods are becoming the new standard of fast variational optical 
flow computation, providing gain factors higher than 20 when com-

pared to classical GS-like algorithms for real-time (i.e. 60 Hz) pro-
cessing, as been reported on small images (120 x 160 pixels) in [7].

Conclusion

This paper reports the work on fluid dynamics estimation and visual-
ization conducted in the Onera’s project MEMFIS. Window correlation 
methods, popular in the PIV community, have been reviewed, together 
with the regularization framework (also called variational approach) 
usually adopted in computer vision. In the line of [3], a unified frame-
work merging the two approaches in a compound criterion has been 
proposed. But the main subject has been to describe recent algo-
rithmic developments, such as fast iterative correlation techniques, 
which are at the heart of the window-based FOLKI algorithm [12], 
and multi-resolution/multigrid optimization schemes. Combined with 
a GPU implementation, these approaches can already process PIV 
data at video rate, based on a simple window correlation paradigm. 
In the near future, there is no doubt that real-time performance will 
be also achievable using more sophisticated techniques, based on 
physically-sound models.

These new algorithmic solutions could be the basic engine of a video 
rate velocity field visualization and interpretation toolbox. They will 
provide real time computing of the velocity fields inside the visualiza-
tion tool, so that neither pre-computing nor storing of displacement 
fields will be necessary. Thus, based on PIV images alone, the user 
will be able to visualize the salient phenomena while browsing the PIV 
image sequence, in order to select a spatiotemporal zone and suitable 
processing in real-time, like, for instance, the detection and tracking 
of a vortex.

Such combination of recent data processing solutions open the way 
to a major development in fluid dynamics studies of experimental 
data. Indeed, the profound changes that we have reported in terms 
of data processing takes place in a context of great changes both on 
the experimental side, with new acquisition settings (Time Resolved 
PIV, tomographic PIV, etc.) and on the numerical side, where finer 
simulation tools have become available. We think that there is a ma-
jor opportunity for advanced data processing techniques, based on 
physical regularization and variational approaches, to realize a smart 
interface between both sides. We have tried to show that several re-
cent results concerning algorithmic and architectural problems pro-
vide solutions to meet this challenge in the near future. In our view, the 
next step is to launch multidisciplinary studies between experimental-
ists, physicists and data processing specialists to develop innovative 
interpretation tools 
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Box 5 - Multigrid schemes

MG methods are used to speed up the resolution of a linear system such as Ad = b based on a smoother like Gauss-Seidel (GS). Let 
d* be the true solution of the system, d0 the current solution and e0 = d0 – d* the current error. As mentioned in the text, a few sweeps 
of the GS algorithm starting from d0, an operation that we denote by GS(A, b, d0), leads to another estimate d1 and reduces the high-
frequency part of the error, i.e. the resulting error  e1 = d1 – d* is smoother than e0.

MG methods consist of solving the problem on coarse grids using few iterations of a smoother (here Gauss-Seidel or SOR) and to correct 
back d0 on the finest grid. Two things are then required: a reduction operator R  that projects the smoothed error e0 and the linear system 
(A,b) to a coarser level and a prolongator P that interpolates the correction at some coarse level to the finer level. The interpolation in 
P  will generally introduce high frequency errors in the solution: this error is reduced by smoothing again (post-smoothing) using GS. 

The simplest “two grids” scheme algorithm is:
	 - Get a first solution on the fine grid GS(A, b, 0)   d0
	 - Compute residual: r0 = b – Ad0 
	 - Error approximation on coarse grid (reduction/smoothing) : GS(R A, R r0, R 0)   e1

	 - Correction of the current solution: d = d0 + P e1 
	 - Smooth the corrected solution: GS(A, b, d)   d1

This procedure can be generalized to more than two grids by recursion on the error e, and
there are several MG “cycles”, such as the V and W-cycles (see Figure B5 - 01).

           
      Figure B5 - 01 - Multigrid methods. V-cycle (left) and W-cycles (see text).

In the “full multigrid” scheme, sketched in Figure B5 - 02, we start the algorithm on the coarsest grid with some iteration of the chosen 
smoother GS (we can also perform a direct resolution because at this scale, the linear system is of small and its resolution is cheap). 
This approximation is used as an initialization for a multigrid W-cycle (or V-cycle) starting from the next finer grid. But we also merge 
this process into a multi-resolution estimation process, as explained: the prolongated displacement field is used to change the current 
registration problem and update the linearized system. Recursively, every solution found on a coarse grid is used for initialization/reli-
nearization by prolongation for the solver on the next finer grid. We can also perform multiple consecutive multigrid cycles on the same 
resolution to get a better approximation.

 

      Figure B5 - 02 Full multigrid method. The basic scheme is a W-cycle, which is merged into a coarse-to-fine multi-resolution process.
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