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A          robust and reliable attitude estimator is a key technology enabler for the deve-
lopment of autonomous aerial vehicles. This paper is an introduction to attitude 

estimation for aerial robotic systems. First, attitude definition and parameterizations 
are recalled and discussed. Then, several attitude estimation techniques – ranging 
from algebraic vector observation-based attitude determination algorithms to dynamic 
attitude filtering and estimation methodologies – are presented and commented upon in 
relation to practical implementation issues. Particular attention is devoted to the appli-
cations of a well-known nonlinear attitude observer (called explicit complementary filter 
in the literature) to aerial robotics, using a low-cost and light-weight inertial measure-
ment unit, which can be complemented with a GPS or airspeed sensors.

Introduction

The growing interest of the robotics research community in aerial robo-
tic vehicles is partly related to numerous Applications, such as surveil-
lance, inspection, and mapping. The development of a small-scale low-
cost autonomous aerial vehicle requires effective solutions to a number 
of key technological problems. The avionics system of such a vehicle 
is arguably the technology that is most closely coupled to the auto-
nomy of the vehicle. Within an avionics system, the attitude estimator 
provides the primary measurement that ensures robust stability of the 
vehicle flight. The development of a robust and reliable attitude estima-
tor that can run on low-cost computational hardware and that requires 
only measurements from low-cost and light-weight sensing systems, 
is a key technology enabler for the development of such systems.

This paper is an introduction to attitude estimation for aerial robotic 
systems, with a focus on nonlinear attitude observers. In fact, recent 
advances in observer theory have led to the development of a signifi-
cant body of nonlinear attitude observers [13], [25], [26], [32], [40], 
[47], [51]. These observers are algorithmically simple and can be 
implemented on low-processing power microprocessors in unit qua-
ternion form. They need only vector measurement inputs from low-cost 
and light-weight microelectromechanical system (MEMS) strap-down 
inertial measurement units (IMUs), which can be further complemented 
with a GPS or airspeed sensors. Typically, the algorithms make use of 
a measurement of angular velocity, measured by a 3-axis gyroscope, 
a vector direction estimate of the gravitational direction derived from a 
3-axis accelerometer (based on the small acceleration assumption) and 
where possible, vector measurement of the magnetic field, measured 
by a 3-axis magnetometer [13], [25], [32]. All low-cost MEMS devices 

are subject to significant noise effects. Gyroscopes and accelerometers 
suffer from time-varying bias and noise due to temperature change, 
vibration and impacts; magntometer readings are corrupted by onboard 
magnetic fields generated by motors and currents, as well as external 
magnetic fields experienced by vehicles that maneuver in built environ-
ments. Earlier work in the development of attitude observers tackled 
the question of bias in the gyrometer MEMS devices [13], [25], [32], 
[47], [49] by introducing an adaptive bias estimate in the algorithm. 
Decoupling of input signals to ensure that the roll and pitch estimates 
are not affected by deviations in the magnetometer measurements was 
considered in [17], [32], [16] and represents an important modification 
of the basic algorithm to improve the overall quality of the attitude esti-
mate. On the other hand, when the vehicle is subject to important linear 
accelerations, the attitude estimate provided by conventional solutions 
can be significantly erroneous, since the vector direction estimate of the 
gravitational direction is no longer close to that obtained from the acce-
lerometer measurements. To cope with strong accelerations, a com-
plementary GPS measurement of the vehicle’s linear velocity can be 
used to estimate its linear acceleration and, subsequently, to improve 
the precision of the attitude estimate [31], [15], [38]. In addition, in the 
case of an aircraft performing a level turn, air pressure sensors, such 
as pitot tubes that measure the magnitude of the airspeed, can be com-
bined with accelerometer readings in order to derive a more precise 
estimate of the gravitational direction and, thus, significantly improve 
the quality of the attitude estimate [23]. 

The paper is organized as follows. In § "Attitude parameterizations", 
attitude definition and parameterizations are recalled and discussed. 
In § "Overview on attitude estimation based on vector observations", 
existing attitude estimation methods based on vector observations, 
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including both static and dynamic attitude estimation methodologies, 
are reviewed with a particular discussion on a nonlinear explicit com-
plementary filter/observer [25] that was proposed by the last two 
authors of this paper and has become a common solution for most 
aerial robotic applications. Then, § "Nonlinear attitude observers for 
aerial robotic systems" presents some relevant nonlinear attitude ob-
servers for aerial robotic systems that were developed on the basis of 
the explicit complementary filter. Finally, conclusions are given.
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Attitude parameterizations

The attitude represents the orientation of a frame, attached to the mo-
ving rigid body (i.e., body frame B), with respect to (w.r.t.) an inertial 
reference frame I (see figure 1). It can be described by a rotation 
matrix, an element of the special orthogonal group SO(3), where

3 3
3SO(3) { det( ) 1, }T TR R R R RR I×∈ = = =  ∣

By denoting such a rotation matrix as SO(3)R∈ , it satisfies the fol-
lowing differential equation

( )R RS ω= 	 (1)

where 1 2 3[ , , ]ω ω ω ω= ∈  is the angular velocity vector of the 
body frame relative to the inertial frame, expressed in the body frame 
and the notation S(•) denotes the skew-symmetric matrix associated 
with the cross product ×, i.e., 3, , ( )a b S a b a b∀ ∈ = × .

Studies about the rotation group SO(3) started in the eighteenth cen-
tury and the problem of parameterization of the rotation group of the 
Euclidean 3D-space has received great interest since 1776, when 
Euler showed that this group is a three-dimensional manifold. A rota-
tion matrix has nine scalar components, but an element of the rotation 
group can be represented by a set of less than nine parameters. Three 
is the minimum number of parameters required for this. However, it 
was shown that no three-dimensional parameterization can be 1-1 
(i.e., its transformation to SO(3) is a global diffeomorphism) [45]. 
Previously, Hopf showed in 1940 that no four-dimensional paramete-
rization can be 1-1 and that a five-dimensional parameterization can 
be used to represent the rotation group in a 1-1 global manner. Howe-
ver, the greatest inconvenience of Hopf’s five-dimensional paramete-
rization concerns the nonlinearity of the associated differential equa-

tions [45]. On the other hand, four-dimensional parameterizations 
[45], [39], like the quaternion parameterization, only represent the 
rotation group in a 2-1 manner. Nevertheless, although the quaternion 
parameterization is not 1-1, no difficulty arises for practical purposes, 
because the transformation of a unit quaternion to SO(3) is a local 
diffeomorphism everywhere. Hereafter, the Euler angles and the
quaternion parameterizations are recalled and discussed.

Euler angle parameterization

Among many three-dimensional parameterizations [45], the Euler 
angles are the most widely-used. Their definition depends on the pro-
blem to be solved and on the chosen coordinate systems. A definition 
commonly used in the aerospace field is the Euler angle parameteri-
zation with three angles ,  and  corresponding to roll, pitch and
yaw respectively [45], [34]. These Euler angles allow a rotation matrix 
R to be factorized into  a product of three matrices of rotation about 
three axes of the body frame as follows:

0 0 1 0 0
0 0 1 0 0 ,

0 0 1 0 0

C S C S
R S C C S

S C S C

ψ ψ θ θ
ψ ψ φ φ

θ θ φ φ

−     
     = −     
     −     

where S and C denote the sin(•) and cos(•) operators. They can be 
computed from the rotation matrix R as

3,2 3,3

3,1

2,1 1,1

atan2( , )

asin( )

atan2( , )

r r
r
r r

φ

θ

ψ

 =


= −
 =
where ri,j is the component of row i and column j of R. The Euler 
angle kinematics satisfy [45], [34]
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where T denotes the tan(•) operator. If 3,1 1r = ± , then / 2θ π=  , 
but  and  are no longer well-defined. Therefore, the Euler angles 
constitute a parameterization of the rotation group, except at points 
corresponding to / 2θ π= ± . Furthermore, when / 2,θ π φ= ±   
and ψ  are not well-defined either. The problem of singularities is a 
weakness of the Euler angle parameterization and, as a matter of fact, 
of all three-dimensional parameterization techniques.

Unit quaternion parameterization

Compared to three-dimensional parameterizations, four-dimensional 
parameterizations allow singularities to be avoided. The earliest for-
mulation of the four-dimensional parameterization, as pointed out in 
[39], was given by Euler in 1776. Earlier in 1775, he stated that in 
three dimensions, every rotation has an axis. This statement can be 
reformulated as follows (see e.g., [39], [37] for the proof). 

Euler’s theorem: For any SO(3)R∈ , there is a non-zero vector 
3v∈  satisfying v vR = .

This theorem implies that the attitude of a body can be specified 
in terms of a rotation by some angle about some fixed axis. It also 
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indicates that any rotation matrix has an eigenvalue equal to one. A 
number of four-dimensional parameterizations can be found in the 
literature (see e.g., [39], [7]), such as the Euler parameters, the qua-
ternionparameters, the Rodrigues parameters and the Cayley-Klein 
parameters. Here, only the quaternion parameters are presented.

The quaternions were first proposed by Hamilton in 1843 [14] and 
further studied by Cayley and Klein. A unit
quaternion has the form

1 2 3= +q s iv jv kv+ +
where 1 2 3, , , s v v v  are real numbers satisfying 2 2 2 2

1 2 3 1s v v v+ + + = , 
called constituents of the quaternion q, and i, j, k are imaginary units 
that satisfy

2 2 2 1, , ,i j k ij ji k jk kj i ki ik j= = = − = − = = − = = − =

In the literature, the unit quaternion q can be represented in a more 
concise way as 3( , )q s v= ∈ ×  , where s∈  is the real part of 
the quaternion q and 3

1 2 3[ , , ]and Tv v v v v= ∈  is its pure part or 
imaginary part. The quaternions are not commutative, but associative, 
and they form a group known as the quaternion group where the unit 
element is (1,0)1  and the quaternion product  associated with this 
group is defined by

Ts s ss v v
v v sv sv v v

     −
=      + + ×     



The transformed rotation matrix R is uniquely defined from 
the unit quaternion q, using Rodrigues’ rotation formula

2
3 2 ( ) 2 ( ) .R I s S v S v= + +

On the other hand, converting a rotation matrix to a quaternion is less 
direct. In fact, there always exists at least one component of the unit 
quaternion q different from zero. Once this component is identified, 
the quaternion can be deduced. Note that only two values of the unit 
quaternion q correspond to the rotation matrix R and that they have 
opposed signs. For example, if ( ) 1R ≠ −tr , then

1 ( ), ( )
2 4

R Rs tr R S v= ± + =

Finally, the quaternion kinematics are given by
01

2
q q

ω
 

=  
 

 

The quaternion parameterization involves four parameters (i.e., only 
one redundant parameter) and is free of singularities. The associated 
differential equation is linear in q. Furthermore, the structure of the 
quaternion group is, by itself, of great interest.

Overview on attitude estimation based on vector 
observations

Algebraic attitude determination

The attitude is often reconstructed from the observation of at least 
two non-collinear vectors. The first solution is the TRIAD algorithm, 
proposed by Black in 1964 [44], which algebraically computes the 
attitude matrix from the information in both the body frame and the 
inertial frame of two non-collinear unit vectors. More precisely, by 
denoting 1 1 2 2, , ,v v v vI B I B  as the vectors of coordinates, expressed in 
the inertial frame and the body frame respectively, of two unitary 

Euclidean vectors 1v  and 2v , one has 1 1 2 2,v Rv v Rv= =I B I B  , and 
the TRIAD algorithm provides the attitude matrix R as

[ ][ ]
3

1 2 3 1 2 3
1

,TT
i i

i

R s r s s s r r r
=

= =∑
with two orthonormal triads

1 2
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1 2

1 2
1 1 2 3 1 2

1 2

, , ,
| |

, , .
| |

v vs v s s s s
v v

v vr v r r r r
v v

 ×
= = = ×

×


× = = = × ×

I I
I

I I

B B
B

B B

Although this algorithm is simple to implement, the resulting estima-
ted attitude matrix, in the presence of measurement noises, is not 
guaranteed to remain in the rotation group SO(3) and, thus, additio-
nal projection of the computed attitude into the group SO(3) is often 
required (using, for example, the Gram-Schmidt orthonormalization).
Moreover, the TRIAD algorithm can only accommodate two vector 
observations, which may lead to difficulty in treating information when 
the observation of more than two vectors is available.  For instance, 
in this case, the observation of which pair of vectors provides the 
best attitude estimate using the TRIAD algorithm may not be known a 
priori. Additionally, it does not take the relative reliability of the vector 
observations into account, even in the case of two vector observa-
tions. These drawbacks of the TRIAD algorithm disappear in optimal 
algorithms, which compute the best attitude estimate based on a 
cost function for which all vector observations are taken into account 
simultaneously. Optimal algorithms are, however, computationally 
more expensive than the TRIAD algorithm. The first and also the best-
known optimal attitude estimation problem is the least-square Wahba 
problem [52]. It consists in finding a rotation matrix ˆ (3)A SO∈  which 
minimizes the cost function

2
2

1

1( ) | |
2

n

i i i
i

J A k v Av
≥

=

−∑ B I
 	 (2)

where A corresponds to the transpose of the estimated attitude 
ˆ (3)R SO∈  ˆ( ., );Tie A R=  { }ivB  is a set of measurements of ( 2)n ≥  

unit vectors, expressed in the body frame; { }ivB  are the correspon-
ding unit vectors, expressed in the inertial frame; and { }ik  is a set of 
non-negative weights, which can be designed based on the reliability 
of the corresponding measurements. Wahba’s problem allows arbi-
trary weighting of vector observations. In [42], the author proposes 
the particular choice 2

i ik σ −=  , the inverse variance of the measure-
ment vi

B , in order to relate Wahba’s problem to Maximum Likelihood 
Estimation of the attitude based on an uncorrelated noise model [42]. 
In fact, the cost function J(A) defined by Eq. (2) can be rewritten as

( )

( )

2

1
2

2 2

1

1( ) ( )( )
2

1 | | | | ( )
2

n
T

i i i i i
i
n

T
i i i

i

J A k tr v Av v Av

k v v tr AB

≥

=
≥

=

= − −

= + −

∑

∑

B I B I

I B

with 2
1 ( )Tn

i i iiB k v v≥
=∑ B I . Therefore, the problem of finding a 

rotation matrix Â  that minimizes J(A) is equivalent to finding a rota-
tion matrix Â  that maximizes tr(ABT). The first solutions to Wahba’s 
problem, based on this observation, were proposed in 1966 by Farrell 
and Stuelpnagel [53] and by Wessner, Velman, Brock in the same 
paper1. However, these solutions, being computationally expensive, 
are not well suited to real-time applications. For instance, Farrell and 

1 These solutions were sent to Wahba and he presented them in that paper.
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Stuelpnagel’s method requires a polar decomposition of the matrix 
B into a product B = UP (with U an orthogonal matrix2 and P a 
symmetric and positive semidefinite matrix) and a diagonalization of 
P into P = WDWT 3 (with W a orthogonal matrix and D a diagonal 
matrix whose diagonal elements are arranged in decreasing order, 
i.e., D = diag(d

1
, d

2
, d

3
) with d

1
 ≥ d

2
 ≥ d

3
). The optimal rotation 

matrix Â  is then given by ˆ (1,1,det( )) TA UWdiag U W= .

As for Wessner’s solution, which is a particular case of Farrell and 
Stuelpnagel’s solution, the optimal rotation matrix Â  is calculated 
according to 

( ) ( )1 1/2ˆ T TA B B B
−

=

For this solution, due to the inverse of BT , a minimum of three (non-
collinear) vector observations must be available, knowing that two 
non-collinear vectors are sufficient for attitude reconstruction using 
the TRIAD algorithm. In addition, the calculation of the square root 
of the matrix BTB also requires expensive computation. For example,
it is necessary to diagonalize BTB as BTB = WB DB W

T
B  to obtain 

(BTB)1/2 = WB D
1/2
B WT

B.

No solution to Wahba’s problem was able to replace the TRIAD algo-
rithm in practice, until Davenport’s q method [10] and the numerical 
technique QUEST (QUaternion ESTimator) [41] were proposed. By 
using the quaternion parameterization, Davenport transformed Wah-
ba’s problem into the problem of finding the largest eigenvalue max of 
the symmetric Davenport matrix 4 4×∈  defined by

3C I z
K

z

γ

γ

− 
 
 
 

with TC B B+ , ( )Bγ tr , 2
1

n
i i iiz k v v≥

= ×∑ B I . The optimal qua-
ternion, corresponding to the optimal rotation matrix Â  of Wahba’s 
problem, is the normalized eigenvector qmax of K associated with the 
eigenvalue max. In fact, the largest eigenvalue max may be obtained by 
solving analytically the largest zero of the fourth-degree characteris-
tic polynomial det 4( )K Iλ−  [10]. However, Davenport’s q-method 
is also computationally complex. This leads to the development of 
the QUEST algorithm by Shuster [41] on the basis of Davenport’s 
q-method. QUEST consists in solving numerically the equation 
det 4( )K Iλ− , or equivalently

4 2( ) ( ) 0a b c ab c dλ λ λ γ− + − + + − = 	 (3)

with4 2 ( ( ))a tr adj Cγ − , 22b zγ +
, ( )c det C z Cz+

 ,
2d z C z

 . More precisely, based on Shuster’s observation that max 
is close to 2

1
n

o ii kλ ≥
=∑ , QUEST makes use of the Newton-Raphson 

method to solve Eq. (3), with o as the initial guess. It thus avoids 
the computation of all eigenvalues of K (i.e., all solutions to Eq. (3)). 
QUEST is theoretically less robust than Davenport’s q-method, but it 
is clearly faster (normally few iterations are sufficient) and has proven 
to be reliable in practice (e.g., QUEST was implemented in the Magsat 
satellite in 1979). Many alternative numerical solutions for QUEST and 
Davenport’s q-method to Wahba’s problem have been proposed like, 
for instance, the Singular Value Decomposition (SVD), the Fast Opti-
mal Attitude Matrix (FOAM), the Estimator of the Optimal Quaternion 
(ESOQ), ESOQ-1, ESOQ-2 algorithms [29]. These solutions, along 

2 det(U) can be either 1 or −1.
3 Note that any symmetric matrix is diagonalizable.
4 Recall that adj(A)A = Aadj(A) = det(A)In, for an n × n matrix A.

with QUEST, for Wahba’s problem require a trade-off between com-
putational time and precision; for instance, the number of iterations 
has to be defined in advance. Additionally, their main shortcoming 
concerns the memoryless characteristic in the sense that information 
contained in measurements of past attitudes is not preserved.

Dynamic attitude filtering and estimation

Since a filtering algorithm is usually preferred when measurements 
are obtained over a range of times and especially when vector mea-
surements are noisy, many alternative solutions to algebraic methods 
have been proposed. They combine the vector measurements with 
the kinematic equation of rotation (i.e., Eq. (1)) and the angular velo-
city measurements. In this manner, the attitude estimation methods 
such as TRIAD, QUEST, SVD, FOAM, ESOQ, etc., can still be used as 
a preprocessor (i.e., the role of an attitude sensor) for a certain num-
ber of attitude filtering methods, such as in many Kalman filters (KFs), 
extended Kalman filters (EKFs), or Kalman-like filters (see, e.g., [11],
[21], [28], [9], [3] and the references therein), or nonlinear obser-
vers (see, e.g., [40], [24], [25], [47], [51]). However, this process is 
not a prerequisite and is loosened in many attitude filtering methods, 
including KFs and EKFs, as proposed in [43], [1], [13], [25], [26], 
[30], [50], [9], etc. This leads to simpler, faster and (probably) more 
accurate methodologies. For instance, consider the filter QUEST al-
gorithm (a recursive discrete-time Kalman-like estimator) [43]. The 
author proposes to calculate the estimated attitude using the QUEST 
algorithm and by propagating and updating the matrix B (which is, 
itself, involved in the Davenport matrix K) as

3 3 1 1
1

( ) ( , ) ( ) ( )
kn

T
k k k k i i i

i

B t t t B t k v vµ × − −
=

= Φ +∑ B I

where 3 3 1 1( , ) ( )k k kt t B t× − −Φ  is the state transition matrix of the trans-
pose of the rotation matrix R,  is a fading memory factor and nk is 
the number of vector observations at time tk. An alternative sequential 
algorithm for the filter QUEST is the recursive quaternion estimator 
(REQUEST) [1] which propagates and updates the Davenport matrix 
K by

4 4 1 1
1

( ) ( , ) ( )
kn

k k k k i i
i

K t t t B t k Kµ × − −
=

= Φ +∑

where 4 4 1 1( , ) ( )k k kt t B t× − −Φ  is the quaternion state transition matrix 
and Ki is the Davenport matrix for a single vector observation

3( ) ( ) (( ) ) ( )

( ) ( )

T T T
i i i i i i i i

i T T
i i i i

v v v v v v I v v
K

v v v v

 + − ×
=  

×  

B I I B B I B I

B I B I

The main shortcoming of the filter QUEST and REQUEST algorithms 
concerns the fading memory factor  which, being arbitrarily cho-
sen, makes these solutions suboptimal filters. This leads to the deve-
lopment of the Optimal-REQUEST algorithm [8][Ch.3] which, being 
essentially based on the REQUEST algorithm, further optimally cal-
culates the fading memory factor  in the update stage of REQUEST 
according to a covariance optimization argument. Note that the filter 
QUEST, REQUEST and Optimal-REQUEST algorithm, being based on 
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QUEST, are numerical gradient methods and computationally more 
expensive than other modern algorithms (such as nonlinear attitude 
observers) due to their optimization-based nature.

Other worthy examples are nonlinear attitude observers. The earliest 
nonlinear observer was proposed by Salcudean [40] using the unit 
quaternion representation. This work has led to the development of 
a significant body of nonlinear attitude observers over the last fifteen 
years, by exploiting either the unit quaternion or the rotation matrix 
[40], [35], [51], [47], [24], [46], [25], [49], [32], [12], [16]. The 
performance of recent observers is comparable to modern nonlinear 
filtering techniques [9]. They generally have much stronger stability 
and robustness properties and are simple to tune and implement [25]. 
Most early nonlinear attitude observers were developed on the basis
of Lyapunov analysis. However, the attitude estimation problem has 
also become an intuitive example for the development of recent theo-
ries on invariant observers for systems with symmetry [4], [5], [6], 
[25], [19], [48]. For instance, an illustrative example concerning the 
nonlinear explicit complementary filter proposed by Mahony et al. 
[25] is taken. This method is basically inspired by the Luenberger 
observer [22] in the sense that the dynamics of the estimated attitude 
R̂  contains two parts: a main part copying the dynamics of the real 
attitude (i.e., Eq. (1)), and an innovation part allowing the correction 
of the estimated attitude to the real attitude. For instance, if the gyro 
measurements are not affected by biases, the observer dynamics is 
given as

1

ˆ ˆ ˆ
n

i i i
i

R RS k v vω
=

 
= + ×  

 
∑ B B 	 (4)

with ki positive constant gains designed based on the reliability of 
the corresponding measurements and ˆˆ T

i iv R v

B I  . An important 
issue of the attitude filtering concerns the gyro bias, leading to a com-
plementary approach in which the gyroscopes are used to filter the 
vector measurements, which are in turn used to estimate the gyro 
bias (e.g., [25], [47], [51]). By making a constant gyro bias assump-
tion (i.e., y =  + b


, with y the gyro measurement and b


 the 

constant gyro bias vector), a complete version of the explicit comple-
mentary filter is given as [25]

1

ˆˆ ˆ ( )

ˆ

ˆ

y R

b
n

R i i i
i

b b R

R RS b

b

k v v

k

ω

ω

ω σ

σ

σ

σ σ
=

 = − +
 =

 ×



−

∑









B B
	 (5)

where kb, ki are positive constants. This is a continuous version; 
however, a discrete version can be easily derived. It can also be 
conveniently rewritten in quaternion form [25], [16]. Furthermore, a 
fast attitude estimation method from vector observations like TRIAD 
or QUEST can be used for a good initial attitude estimate. This obser-
ver is derived by considering the Lyapunov function candidate

2 2

1

2 ˆˆ| | | |
n

T
i i i

bi

L k v R v b b
k ω ω

=

− + −∑ B I 	 (6)

whose derivative along any solution to the error system is 
22 ( ) 0a RM= − ≤P 

L ‖ ‖ , with , 1
ˆ , ( ) , ·T Tn

i iiR R R M v v=∑

 

B B ‖‖ the 
Frobenius norm and Pa(•) the skew-symmetric projection operator in 

square matrix space. With at least two non-collinear vector observa-
tions the estimated attitude asymptotically converges to the real one,
for almost all initial conditions, even in the case of time-varying vectors 
(see [25], [48] for the detailed proofs). This is the strongest possible 
result  knowing that no smooth globally asymptotically stable obser-
vers exist on SO(3) due to the topology obstruction of the rotation 
group [2]. In the case of a single vector observation, the solutions to 
this filter are still well-posed, whereas analytically reconstructing the 
attitude from a single vector observation is not possible. In particular, 
almost-global asymptotical stability is still ensured in the case of a 
single vector observation under the persistent excitation assumption 
(i.e., if the vector’s direction or the vehicle’s attitude is permanently 
varying) [26].

Remark  
Interestingly, the first term on the right-hand side of the Lyapunov 
function L defined by (6) corresponds to the cost function ˆ( )TJ R  
related to Wahba’s problem. Therefore, in the absence of gyro bias, 
the (numerical) solution to the bias-free explicit complementary filter 
(4) converges asymptotically/exponentially to the optimal solution to 
Wahba’s problem for almost all initial conditions under observability 
conditions.

A generalized version of the explicit complementary filter (5) recently 
proposed by Jensen [18] is given as follows

1

ˆˆ ˆ ( )

ˆ ˆˆ ( )

ˆ

y P

y P

n

i i i
i

R RS b K

b RS b K

k v v

ω

ω ω

ω σ

ω σ

σ
=

= − +

− +

×






=





∑







B B

	 (7)

where ki are positive constant scalar gains; KP and KI are symme-
tric positive definite matrices (not necessarily constant). Clearly, this 
generalized observer offers a larger tuning space than the explicit 
complementary filter (5) while ensuring similar stability and conver-
gence properties; in addition, it is shown that bias-free multiplicative 
extended Kalman filter (MEKF) and constant-gain MEKF correspond 
to its particular cases [18].

Nonlinear attitude observers for aerial robotic 
systems

Sensor measurements

The most basic instrumentation embarked on an aerial robot for atti-
tude estimation is a MEMS IMU, which can be complemented with a 
GPS or airspeed sensors. Assume that the IMU consists of a 3-axis 
gyroscope, a 3-axis accelerometer and a 3-axis magnetometer.

	 • The 3-axis gyroscope measures the angular velocity 
y =  + b


 + 


 

where ∈  is the measurement noise and 3bω ∈  denotes a 
constant (or slowly time-varying) gyro bias. Generally, gyroscopes 
are rather robust to noise and quite reliable for aerial robotics appli-
cations.
	 • The specific acceleration 3a ∈B  expressed in the body-
fixed frame B is defined as 3( )Ta R v ge= −B , where the vehicle’s 



Issue 8 - December 2014 - Introduction to Nonlinear Attitude Estimation for Aerial Robotic Systems
	 AL08-04	 6

acceleration expressed in the inertial frame I is v  and the gravitatio-
nal acceleration expressed in the frame I is ge3, with 3 (0,0,1)Te = . 
The 3-axis accelerometer measures this specific acceleration

 y a aa a b η= + +B  
where 3

aη ∈  is the measurement noise and 3bω ∈  denotes a 
bias term. Accelerometers are highly sensitive to vibration and, thus, 
often require significant low-pass mechanical and/or digital filtering 
to be usable.
	 • The 3-axis magnetometer measures the ambient magnetic field

 y m mm m B η= + +B
where 3

mη ∈  is the measurement noise, 3T
B Im R m= ∈  is the 

Earth’s magnetic field expressed in the body frame B and 3
mB ∈  

represents the sum of all local magnetic disturbances generated by 
motors and currents, as well as external magnetic fields experienced 
by vehicles that maneuver in built environments. While the magne-
tometer noise mη  is usually low, the local magnetic disturbance Bm 
can be significant, especially if the sensor is near the power wires of 
the motors.

Application of the explicit complementary filter for IMUs

In view of the attitude estimation survey in Section 3, most existing 
methods of attitude estimation make use of the measurement of at 
least two known non-collinear inertial vectors. Obtaining measure-
ments of two known vectors is, however, difficult in practice and 
in particular for small aerial robots. In fact, while the magnetome-
ter provides a vector measurement related to the Earth’s magnetic 
field, the accelerometer does not directly measure the gravitational 
direction. This is due to the vehicle’s linear acceleration involved 
in the specific acceleration that is measured by the accelerometer. 
However, most robotic vertical take-off and landing (VTOL) vehicles 
(such as multicopters, or ducted fans) spend a significant amount 
of time in near hovering or slow forward flight, with v˙ ≈ 0; thus, 
using the accelerometer as an inclinometer has been shown to be 
efficient in practice during this flight regime. In fact, it is known that 
for an ideal thrust controlled aerial vehicle, the measurement of the 
gravitational direction cannot be directly extracted from accelero-
meter measurement data [27], [33], [36]. However, VTOL robotic 
vehicles are subject to secondary aerodynamic forces (e.g., blade 
flapping and induced drag) that inject low frequency information 
on the gravitational direction into the accelerometer measurements 
[27], [33]. It follows that the model 3

Ta R e≈ −gB  is an effective 
model for vector attitude measurement in a wide range of practical 
systems [13], [24], [25], [32].

Standard implementation and associated coupling issues

Once the approximation 3
Ta R e≈ −gB  is made, the standard imple-

mentation of the explicit complementary filter (5) consists in defining 
the innovation term R as [25]

1 2
ˆˆ ,R k u u k m mσ × + × B B B B 	 (8)

with k1,2 positive constant gains, /u a− gB B , 3u eI , ˆˆ Tu R uB I, 

/ | |m m mB B I , / | |m m mI I I , ˆˆ Tm R mB I . However, it has been 
recognized that this standard implementation encounters some cou-
pling issues that are well discussed in [16], [17], [30].

	 • Magnetic disturbances and bias influence the estimation of 
roll and pitch angles. In many applications, especially for small-size 
electric motorized aerial robots, significant magnetic disturbances are 

almost unavoidable, leading to significant time-varying deterministic 
error between mB and RTmI. This not only leads to large estimation 
errors of the yaw angle, but also non-negligible errors in the roll and 
pitch estimation.

	 • The dynamics of roll, pitch and yaw estimates are highly 
coupled. This implies that the estimation of the yaw angle strongly 
affects the estimation of the roll and pitch angles. This issue can 
be observed by analyzing the linearized system around the system 
equilibrium. For the sake of simplicity, let us, for instance, neglect 
the gyro-bias b


 and the dynamics of the estimated bias b̂ω  only 

in this discussion. This supposition in association with Eqs. (5) 
and (8) yields the following dynamics of the error attitude matrix 

ˆTR RR=

1 3 3 2( )k e Re k m Rm RR = − × + × ×  

I I 	 (9)

Consider a first order approximation of R  around the equilibrium 
3 3R I R I x×= ≈ + as  , with 3x∈ . Note that locally the first, second 

and third components of x correspond, respectively, to the roll, pitch 
and yaw error estimates. From Eq. (9) it can easily be verified that

2
1 2 ,1 2 ,1 ,2 2 ,1 ,3

2
2 ,1 ,2 1 2 ,2 2 ,2 ,3

2
2 ,1 ,3 2 ,2 ,3 2 ,3

(1 )

(1 )

(1 )

k k m k m m k m m

x k m m k k m k m m x

k m m k m m k m

 − − −
 

≈ − − − 
 

− −  

I I I I I

I I I I I

I I I I I

 	 (10)

In practice, the gravity vector and the Earth’s magnetic field vector 
(i.e., e

3
 and mI ) can be “ill-conditioned” in the sense that they are 

very close to each other. In such a case, the third component of mI
is dominant in relation to its first and second ones. For example, in 
France ,3 0.9m ≈I . As a consequence, in view of Eq. (10) the dyna-
mics of the roll and pitch errors (i.e., x

1
 and x

2
) are strongly coupled 

with the yaw error dynamics (i.e., x
3
).

	 • On the other hand, the ill-conditioning of the two vectors e
3
 and 

mI  may also lead to the impossibility of finding a set of “non-high” 
gains {k

1
, k

2
} so as to provide the system with fast time response, 

bearing in mind that high gains may excessively amplify measure-
ment noises. For discussion purposes and without loss of generality, 
let us, for instance, assume that ,2 0m ≈I  (i.e., 2 2

,1 ,3 1m m+ ≈I I ) and 
2 2
,3 ,1m mI I . Under this approximation, it is straightforward to verify 

that three poles of System (10) are given by:

1 1 2

2
1 2 ,1

2 1 2 2
1 2

2 2
1 2 ,1 1 2 ,1

3 1 2 2
1 21 2

( )

41 ( ) 1 1
2 ( )

41 ( ) 1 1
2 ( )

k k

k k m
k k

k k

k k m k k m
k k

k kk k

λ

λ

λ



 − +
    − + + −  +  


 
  − + − − ≈−
  ++

=

  

=

=

I

I I

The pole 
1
 is associated with the pitch dynamics and the poles 

2
 

and 
3
 are associated with the coupled roll and yaw dynamics. The 

less negative pole 
3
, approximated by 2

1 2 ,1 1 2/ ( )k k m k k− +I , will be 
very close to zero if k

1
 and k

2
 are not chosen sufficiently high, since 

2
,1 1m I . This leads to slow time response of the coupled roll and 

yaw dynamics.
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Modified solutions for overcoming coupling issues

Decoupling of input signals to ensure that the roll and pitch esti-
mates are not influenced by magnetic disturbances was conside-
red in [32], [30], [17], [16] and represents an important modifica-
tion of the standard implementation of the explicit complementary 
filter (i.e., Observer (5) with R given by (8)) in order to improve 
the overall quality of the attitude estimate. Let us discuss these 
strategies. 

The solution proposed by Martin and Salaun [30], [32] consists 
in creating another inertial vector as the cross product of the gra-
vitational direction and the Earth’s magnetic field direction, and its 
associated “artificial” measurement based on the cross product of 
accelerometer and magnetometer measurements. More precisely, the 
following vectors are computed

| | | |I B
u m u mv v
u m u m

× ×
× ×

 

I I B B

I I B I
	 (11)

with /u a− gB B , 3u eI . Then, the explicit complementary filter 
(5) can be applied with the innovation term R now defined as (com-
pare to (8))

1 2ˆ ˆR k u u k v vσ × + × B B B B 	 (12)

with k
1,2

 positive constant gains, ˆˆ T
Bu R u I , ˆˆ T

Bv R v I . This so-
lution ensures the decoupling of the roll and pitch estimates from 
magnetic disturbances locally in the general case [30] and globally 
in the presence of a constant magnetic bias in the inertial frame (as 
additionally proved in [17]).

I TR

B
α

1e

1e

2e

2e

3e u= I

3e

vI
u mπ

I I

u mπ
B B

mI

mB

ˆv v×B B

vB

v̂B

uB
ûB

ˆu u×B B

3eg

a- B
ˆˆ Ta R u= g- B I

Figure 2 - Vectors involved in the conditioned observer

Inspired by the work of Martin and Salaun, we have proposed ano-
ther observer termed conditioned observer [16], which still takes the 
same form as the explicit complementary filter (5) but with the modi-
fied innovation terms R and b given by 

( )1 2

3 4

ˆ ˆ ˆ ˆ( )

ˆ ˆ

T
R

b

k u u k v v u u

k u u k v v

σ

σ

× + ×

× + ×









B B B B B B

B B B B

	 (13)

with k
1,2,3,4

 positive constant gains satisfying 3 4 , /k k u a> − gB B , 
3u eI , and (compare to (11) and see figure 2)

| | | |
u u

B
u u

m m
v v

m m
π π
π π

 

I B

I I

I B
I

I I
	 (14)

with 2 3
3| | ,T

x x I xx xπ − ∀ ∈  , denoting the projection on the 
plane orthogonal to x. The conditioned observer ensures the global 
decoupling of the roll and pitch estimates from magnetic disturbances 
and also from the dynamics of yaw estimate in the general case. 
This decoupling property is clearly stronger than that of the previous 
solution. Moreover, in contrast with the standard implementation of 
the explicit complementary filter (5), fast convergence rate can still be 
achieved with non-high gains, even in the case of ill-conditioning of 
the gravity and Earth’s magnetic field directions [16].

GPS–aided attitude observers

Most existing (“classical”) attitude observers/filters rely on the 
small acceleration assumption (i.e., v  g ) so that the gravitatio-
nal direction measurement can be approximated by the accelero-
meter measurement, as discussed in the previous subsection. For 
many VTOL vehicles in aggressive motion, however, the vehicle’s 
linear accelerations can be important and can induce large errors 
in the attitude estimate. This is also the case for fixed-wing aircraft 
maneuvering in a limited space and making some rapid turns. To 
deal with strong linear accelerations, a complementary GPS mea-
surement of the linear velocity can be combined with the accele-
rometer measurement to estimate the vehicle’s acceleration and, 
subsequently, improve the precision of the attitude estimate. In 
this way, some GPS–aided attitude observers have been proposed 
recently [31], [15], [38] on the basis of the following differential 
equations

3

( )

v e Ra

R RS ω

= +


=





g B 	 (15)

For instance, the cascade attitude observer proposed by Hua [15] 
consists in, first, estimating the specific acceleration expressed in the 
inertial frame 3v eα − gI  and, then, in using this estimated value 
along with magnetometer measurements to recover the whole attitude 
estimate on the basis of the explicit complementary filter [25]. More
precisely, in order to estimate the specific acceleration αI , the fol-
lowing observer was proposed

1 3ˆ ˆ( )

ˆ( ) ( ) (0, 3)maxT
v q

v k v v e Qa

Q QS k v v a k Q Qω

 = − + +


= + − − −





g B

B ‖ ‖
	 (16)

with k
1
, kv, kq positive constant gains and 3 3Q ×∈  an auxiliary 

matrix that is not a rotation matrix. The last term in the expression 
of Q  creates a dissipative effect when the Frobenius norm of Q be-
comes larger than 3 , allowing it to be driven back to this threshold 
and thus avoiding numerical drifts of Q. It is shown that the errors 

ˆ( , )Ia Qa v v− −B  converge to zero [15]. Consequently, one can view 
either 1 ˆ( )Qa k v v+ −B  as the estimate of I. From here, the author 
proposed the following attitude observer on the basis of the explicit 
complementary filter [25] 

2 3 1

ˆ ˆ ( )
ˆ ˆ ˆ( ( ))

R
T T

R

R RS

k m R m k a R Qa k v v

ω σ

σ

 = +


× + × + − 



B I B B

	 (17)

with k
2,3

 positive constant gains. Almost global convergence of the 
observer is proved. Furthermore, in the special case of constant 
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accelerations of the vehicle, almost-global asymptotic stability of the 
observer is achieved.

Invariant Attitude Observers
When the objective consists in combining the estimation of the atti-
tude and the filtering of the linear velocity (and eventually the posi-
tion), some invariant attitude observers have been proposed recently 
[31], [15], [38]. The earliest nonlinear invariant GPS–aided attitude 
observer was proposed by Martin and Salaun [31]. When measure-
ments are not affected by bias, this observer has the form

1 3

2 3

ˆˆ ˆ( )

ˆ ˆ ( )
ˆ ˆ ˆ(( ) ) ( )
R

T T T
R

v k v v e Ra

R RS

k m R m a a k a R v v

ω σ

σ

 = − + +
 = +


× + × −

B

B I B B B





 g

	 (18)

with k
1,2,3

 positive constant gains. This defines an invariant observer 
[5], [20] in the sense that it preserves the (Lie group) invariance pro-
perties of System (15) w.r.t. constant velocity translation 0v v v+  
and constant rotation of the body frame 0R RR . A practical advan-
tage of this solution is the (local) decoupling of the roll and pitch angle 
estimation from the measurements of the Earth’s magnetic field (which 
may be rather erroneous due to magnetic disturbances). However, only 
local exponential stability of the estimation error is proven in [31] (based 
on the linearized estimation error dynamics), under some assumptions 
on the reference motion (i.e., “smooth trajectory”).

Motivated by this result, other GPS–aided attitude invariant observers 
have been proposed with associated Lyapunov-based convergence 
and stability analyses [15], [38]. The invariant observer proposed by 
Hua [15] is given by 

1 3

2 3

ˆˆ ˆ( )

ˆ ˆ ( )
ˆ ˆ ˆ( )

R
T T

R

v k v v e Ra

R RS

k m R m k a R v v

ω σ

σ

 = − + +
 = +


× + × −

B

B I B







g

	 (19)

with k
1,2,3

 positive constant gains. In fact, observer (19) is slightly 
different from observer (18), which is a simplified version of the 
observer proposed in [31] suited to the case without gyro biases. 
The sole difference between observers (18) and (19) lies in the 
definition of ,  where the term 2

ˆ(( ) )T Tk m R m a a×B I B B  in (18) 
is replaced in (19) by 2

ˆ( )T
B Ik m R m× . Another invariant observer 

was proposed by Robert and Tayebi [38], which can be rewritten in 
the following form

1 3
1

2 3

1ˆ ˆˆ ˆ( ) ( )

ˆ ˆ ( )
ˆ ˆ( )

R

R
T

R

v k v v e Ra RS a
k

R RS

k m Rm k a R v v

σ

ω σ

σ









= − + + +

= +

× + × −


B B

B I B





g

	 (20)

with k
1,2,3

 positive constant gains. The additional term
 

1
ˆ(1/ ) ( )Tk R S aσ B  involved in the dynamics of v̂  in (20) consti-

tutes the difference between observers (20) and (19), allowing the 
authors to establish simpler Lyapunov based stability and conver-
gence  nalyses. The main interest of both studies [15] and [38] is 
to yield semi-global exponential convergence proofs. Both observers 
(19) and (20) guarantee the semi-global stability property under a 
“high-gain”-like condition on k

1
, which indicates that the size of the 

basin of attraction is proportional to k
1
 and tends to be almost-global 

when k
1
 tends to infinity. In fact, the “high-gain” condition is only

 sufficient and simulation results seem to indicate that the basin of 
attraction does not depend on the value of 1k  (>0) . However, the 
proof of this property remains an open problem. It is worth noting 
that, contrary to observer (18), all three observers (19), (20) and 
(16)–(17) do not ensure the (local) decoupling of the estimation of 
the roll and pitch (Euler) angles from the magnetic measurements. 
This suggests –as an open problem– the design of an observer that 
combines the advantages of these observers. For instance, observers 
(18) and (16)–(17) can be combined, yielding the following attitude 
observer (in the replacement of (17)) 

2 3 1

ˆ ˆ ( )
ˆ ˆ ˆ(( ) ) ( ( ))
R

T T T
R

R RS

k m R m a a k a R Qa k v v

ω σ

σ

= +

× + × + −







 B I B B B B

	(21)

with Q the (numerical) solution to System (16). Specifying the stabi-
lity domain of this observer, however, remains open.

Airspeed-aided attitude observer for fixed-wing UAVs

For fixed-wing UAVs that maneuver in GPS denied environments 
(e.g., indoor or near to buildings), an alternative solution of attitude 
estimation based on IMU and improved with GPS data is the use of 
pressure sensors, such as pitot tubes that measure the magnitude 
of the airspeed (i.e., the speed of the vehicle relative to the air) as a 
replacement of GPS velocity measurements. A nonlinear complemen-
tary filter/observer of this nature was proposed [23]. Magnetometer is 
not used in this study since the authors are only interested in roll and 
pitch estimation, but the incorporation of magnetometer measure-
ments into the observer for additional yaw estimation can be done as
described hereafter.

In [23], Mahony et al. consider the case where an aircraft performs a 
level turn (i.e., constant altitude) with constant turn radius 0ρ >  and 
zero sideslip angle. In this case, the vehicle experiences the centripe-
tal acceleration ( ),ca rω ω ρ≈ × ×  with r the unit vector from the air-
craft to the turning center. In order to eliminate the dependence on the 
unknown turn geometry, the approximation r Vω ρ× ≈ air  is made, 
so that the centripetal acceleration can be approximately given by 

ca Vω≈ × air . The airspeed vector Vair is not directly measured, but 
it can be recovered from the measurement of the norm airV  given 
by the pitot tubes and from the knowledge of the angle-of-attack  
as follows

| | 0air air

C
V V

S

α

α

 
 =  
  

	 (22)

The linearized dynamics model of the angle-of-attack approximately 
satisfy

0
0| |air

c
V

α α θ α= − + +
	 (23)

with c
0
 and 

0
 constant parameters and 2θ ω≈ . By numerically 

integrating Eq. (23), the angle-of-attack  can be obtained, which 
enables the computation of the airspeed vector V

air
 according to Eq. 

(22) and, subsequently, of the approximated measurement of the 
centripetal acceleration ( )a V≈ × air .
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Once the centripetal acceleration ac is computed, the gravitational 
direction expressed in the body frame can also be obtained from 
accelerometer readings as

( )
| |

T c
I

c

a au R u
a a

− −
= ≈

−
B

B
B

with 3Iu e . Then, the explicit complementary filter (5) can be 
applied with the innovation term 

R
 defined as 1 ˆR k u uσ × B B  with 

positive constant gain k
1
 and ˆˆ Tu R uB I . Although, several assump-

tions and approximations are made, the reported experimental results 
are quite satisfying [23].

The yaw angle may be recovered under the persistent excitation 
condition [26]. It can also be estimated when magnetometer measu-
rements are involved by using the conditioned observer [16] (i.e., ob-
server (5) with the innovation terms R and b defined by (13)–(14)).

Conclusions

Several attitude estimation techniques –ranging from algebraic vec-
tor observations-based attitude determination algorithms to dyna-
mics attitude filtering and estimation methodologies– have been 
reviewed and commented upon in relation to practical implemen-
tation issues. A particular attention is devoted to the applications 
of the well known nonlinear explicit complementary filter/observer 
[25] to aerial robotics, using a low-cost and light-weight inertial 
measurement unit, which can be complemented with a GPS or airs-
peed sensors. In the case of “weak” linear accelerations, the vector 
direction estimate of the gravitational direction can be derived from 
accelerometer measurements with reasonably good accuracy and, 
thus, the explicit complementary filter can be directly applied. In 
this case, decoupling of input signals to ensure that the roll and 
pitch estimates are not disturbed by deviation in the magnetometer 
measurements represents an important improvement of the basic 
algorithm. On the other hand, in the case of “strong” linear accele-
rations, the combination of IMU with GPS-velocity or airspeed mea-
surements allows the overall quality of the attitude estimate to be 
effectively improved 
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Acronyms

IMU	 (Inertial Measurement Unit)
GPS	 (Global Positioning System) 
MEMS	 (MicroElectroMechanical systems) 
VTOL	 (Vertical Take-Off and Landing) 
UAV	 (Unmanned Aerial Vehicle)

QUEST	 (QUaternion ESTimator) 
SVD	 (Singular Value Decomposition) 
FOAM	 (Fast Optimal Attitude Matrix) 
ESOQ	 (Estimator of the Optimal Quaternion)
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