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Dynamics Simulations

This article highlights how dislocation dynamics (DD) simulations provide a unique 
opportunity for establishing scale transitions in crystal plasticity. Recent progress in 

this numerical method is briefly reviewed. Based on the standard problem of plasticity 
in fcc crystals, we show that DD simulation insight provides guidelines for modeling 
material mechanical properties controlled by the collective behavior of dislocation mi-
crostructures. Hence, DD simulation allows more physical input to be incorporated into 
continuum models for strain hardening, thereby improving their predictive ability.

Introduction

Due to its importance in many technological problems, including 
some aerospace industry issues, the development of a plasticity 
theory based on dislocation mechanics, rather than on an empirical 
basis, is a long-standing goal in materials science. However, due to 
its intrinsically multi-scale nature, the problem of reducing disloca-
tion mechanics to a system of partial differential equations compliant 
with standard continuum computational methods turns out to be a 
non-trivial problem. In the last decade, important progress has been 
made with the development of multi-scale modeling strategies bridg-
ing models of crystal plasticity from the atomistic to the continuum 
domains. Within such multi-scale strategies, 3D simulations of dis-
location dynamics (DD) that give a physically justified description of 
the motions and the interactions of large ensembles of dislocations 
at the mesoscale are strategic [17]. Indeed, DD simulation allows the 
statistical analysis and integration of the many and complex disloca-
tion properties controlling the plastic deformation of metals and al-
loys. This is why this simulation technique is essential to improve the 
constitutive laws used at large scale in continuum mechanics simula-
tions. In addition, DD simulation allows fair and direct comparison 
with experiments.

The purpose of this paper is to briefly present some of the progress 
that we have made in the DD simulation method and in the devel-
opment of physically justified constitutive equations for continuum 
simulations. We first provide an overview of an important model, 
the discrete-continuous model, coupling DD simulations and finite-
element simulations. Then, we present recent results associated to 
the key topics of isotropic and kinematic strain hardening modeling. 
Finally, we present the conclusion and perspective.

From dislocation dynamics simulation to the discrete-
continuous model

The “microMegas” project

Three-dimensional DD simulations compute plastic strain by integrat-
ing the equations of motion for dislocation lines under stress in an 
elastic continuum. The mutual interactions of dislocations, the forma-
tion and destruction of junctions, their line tension and their interac-
tions with other defects are essentially drawn from the elastic theory. 
Whereas some differences remain among DD simulation codes, there 
are basic features that all of these have in common. All of the simula-
tion codes discretize dislocations into a finite set of degrees of free-
dom attached to line segments. The forces on these discrete lines are 
estimated from the elastic theory of dislocations and the positions of 
the dislocation segments are updated according to material-depen-
dent equations of motion. Applying periodic boundary conditions to 
the simulated volume allows a representative volume element of a 
macroscopic sample to be monitored at the scale of a few tens of 
microns. A difficult aspect of DD simulation consists in the defini-
tion of constitutive or " local " rules that account for dislocation core 
properties like dislocation cross-slip and nucleation. For this reason, 
attention must always be paid to these parts of the simulation codes, 
since they control the peculiarities of the materials. Such validations 
can be made either from comparison with atomistic simulation re-
sults or from dedicated experiments.

The LEM1  is at the origin and is the main contributor of a free and 
open source DD simulation code called microMegas2(mM). mM is 
today one of the most popular lattice-based DD simulation codes and 
is used by many research groups to investigate different aspects of 

1  Laboratoire d’Etude des Microstructures, UMR104, CNRS-ONERA
2  http://zig.onera.fr/mm_home_page/index.html
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crystal plasticity.  A full description of this computer code has been 
presented in numerous studies [7][21] and was recently described 
in some detail in [8]. Readers interested in DD simulation applica-
tions to micro-plasticity problems involving size-effects, such as in 
sub-micronic objects and nano-structured materials, are referred to 
this paper.

The discrete-continuous model

DD simulation codes present some limitations when they have to 
deal with complex boundary conditions. Indeed, standard simulations 
compute dislocation-dislocation interactions using classical expres-
sions of the dislocation stress field in infinite media, not taking into 
account the interactions of dislocations with free surfaces and inter-
faces. To overcome these limitations, we develop in collaboration with 
the ONERA Department DMSM the Discrete-Contiuum Model (DCM). 
The DCM is based on a coupling between a DD code and a finite ele-
ment (FE) code via the Eigenstrain “formalism”. In this formalism, 
a dislocation is introduced in the FE simulation as Volterra loops, 
regularized in a plate-like inclusion of thickness h [19][10][25].  In 
particular, at each time step, the area swept (dS) in the DD simulation 
by each dislocation segment is transmitted to FE and the associated 
plastic Eigenstrain ( )pdε  is computed using the following expression:

( ) (  ) , . 
2

p b n dS nd w r h dSε ⊗ + ⊗
= 		                             (1)

where ( , )w r h  is an isotropic distribution function of radius r with 
regularization thickness h, b and n are respectively the dislocation 
Burgers vector and a unit vector normal to the dS . 

The sum of all of the elementary pdε  gives the total plastic eigenstrain 
in the FE part. Once the eigenstrain distribution is calculated, the FE 
code solves the boundary value problem, computing the mechanical 
equilibrium (stress, strain and displacement field) in the simulated 
volume. Then, the DD code exploits the FE stress field to compute the 
dislocation motion.

Unlike with other coupling techniques (e.g., the superposition prin-
ciple), as stated above, the DCM is able to compute the full mechani-
cal equilibrium in the simulated domain. This is a key property of the 
method; it thus allows plastic deformation to be naturally simulated 
in anisotropic media, to simply access periodic boundary conditions 
and to couple the DCM with other constitutive laws (crystal plasticity).

In order to better illustrate the capability of the DCM, two examples 
are presented.

The first one in figure 1 highlights the possibility of running micro-
mechanic calculations within the framework of anisotropic elasticity.  
The plastic relaxation onset of SiGe heteroepitaxial nanoislands, due 
to the lattice mismatch with the Si substrate, has been studied using 
anisotropic elastic constants. Panel (a) of figure 1 shows the disloca-
tion equilibrium position inside the nano-island, while panel (b) shows 
the plastic Eigenstrain induced by the dislocation dynamics.  Once the 
equilibrium is computed, it is possible to have access to the stress 
field (panel c) and to the displacement field (panel d) associated with 
the plastic deformation inside the nano-object.

Figure 1 - DCM simulation of a misfit Dislocation line deposited inside a SiGe island
(a) The dislocation line location and displacements are calculated with the DD code
(b) The plastic shear associated to dislocation dynamics is locally homogenized and exported to the FE problem
(c) Dislocation stress field inside the nanoisland at the mechanical equilibrium
(d) The DCM boundary value problem is solved accounting for crystal rotations and volume shape variations (displacement fields induced by dislocations).
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The second example describes the capability of coupling the DCM 
with other methods, to predict plastic deformation in crystalline mate-
rials.  In order to model the deformation of a Cu polycrystal in figure 2, 
a mesh with 16 grains has been created.  The central grain exploits 
the DCM constitutive law, while the surrounding 15 grains are treated 
with a more phenomenological crystal plasticity model [23][12]. The 
images of panel (a) and (b) show the Von Mises stress in the poly-
crystal after 2% of deformation in the z direction, to highlight the dif-
ference between the two different model predictions (DCM vs. crystal 
plasticity). In panel (a), the dislocation microstructure in the central 
grain is superposed to the stress field and panel (b) illustrates how, 
unlike the continuous crystal plasticity model, the DCM is able to cap-
ture the stress concentration due to the accumulation of dislocations 
at the grain boundaries. Hence, it is possible to quantitatively capture 
the physical process controlling size effects.

Figure 2 - Example of how the DCM can be coupled with other constitutive 
law in the FE framework: deformation of a Cu polycrystal. The central grain 
exploits the DCM constitutive law, while the other 15 Grains in the periodic 
mesh deform following a phenomenological crystal plasticity law. 
In panel (a), the dislocation microstructure has been superposed 
in the central grain to the stress field. 
Panel (b) highlights how the DCM captures the stress heterogeneities 
in comparison with the solutions obtain in the other grains.

Modeling plastic strain hardening

The identification of reliable material constitutive equations for 
continuum mechanics is an essential ingredient for the development 
of new materials and structures. Such equations are essential to 
model the relation between strain and stress inside a material, which 
is a simple linear relation in the case of elastic analyses (Hooke’s 
law) and a much more complex relation when plastic deformation 
is involved. Here, we show that the validity of plasticity laws can be 
considerably improved by making use of information arising from DD 
simulations. For this purpose, the plasticity of fcc metals is used as 
a standard problem. It must be noted that the methodology proposed 
can be extended to other materials, as illustrated by a recent paper 
dedicated to Feα −  [22].

Among the many possible choices of constitutive equations for 
plasticity [2], in this study we consider a well-known dislocation 
density based model [24] derived from the storage–recovery 
framework first developed by Kocks and Mecking (see [14] for a 
review). Nevertheless, the results that we obtained for this model 
can also be incorporated to alternative continuous models for crystal 
plasticity. A small strain framework is assumed here, for simplicity 
reasons.

During plastic deformation, dislocations multiply and their mutual long 
and short-range interactions hinder their motions. As a consequence, 
a shear stress increase dg has to be imposed to produce a shear 
strain increase dg . By definition, the ratio /d dθ τ g=  is the strain 
hardening rate. In a physically justified approach to crystal plasticity, 
the density of dislocations in each slip systems ‘i’ is a key internal 
state variable. For this reason, the calculation of the strain hardening 
can usefully be decomposed in three parts. First, a flow stress rela-
tion, has to be identify in order to calculate the critical stress i

cτ  for 
the activation of slip systems. Secondly, the rate at which the critical 
stress evolves with strain or, equivalently, the rate at which disloca-
tion density evolves under strain in the slip systems i i(d /d )ρ g (see 
§ " Dislocation storage rate and isotropic strain hardening ") must be 
defined. Lastly, the plasticity problem is in a closed form by includ-
ing a flow rule. The latter expression relates, in each slip system, the 
resolved applied stresses   to the critical stress iτ  and the strain rate

ig . In fcc materials and for conventional strain rates, a power law 
expressions is usually considered:

0

i i
m

i
c

i i Xτg
τ

g 〈
−

= 〉 

				                  (2)

where <> are the Macaulay brackets, i
og  is a reference strain rate 

and m is a material parameter accounting for the strain rate sensitiv-
ity. In fcc metals, m is related to the energetics of jog formation and 
it does not influence the modeling of plastic strain since at low tem-
peratures its value is large. In eq. (2), iX is a long-range back-stress 
term accounting for the accumulation of polarized dislocation, i.e. the 
accumulation of geometrically necessary dislocations in regions of 
the deformed material [1]. For instance, the grain-boundaries (GB) 
in a polycrystal act as strong barriers to dislocations glide. Then, 
dislocations are accumulated on both sides of the grain boundaries 
during plastic deformation. This feature limits the slip system activity 
and therefore decreases forward deformation of the grains (see § 
" Modeling kinematic strain hardening ").

The flow stress relation

Following the work of Franciosi et al. [9], the critical stress for the 
onset of plastic slip in a system ‘i’ interacting with slip systems‘j’ 
with density jρ  can be expressed in a tensor form:

i j
c ij

j
b aτ µ ρ= ∑ 				                  (3)

where μ is the elastic shear modulus and b is the dislocation Burgers 
vector. In equation (3), coefficients ija are the components of a ma-
trix that describes the strength of the interactions between slip sys-
tems. In fcc crystals, the number of distinct interaction coefficients 
between the 12 <0 1 1>{1 1 1} slip systems is reduced to six. Four 
coefficients are needed to describe slip system interactions involving 
particular dislocation reactions, that is, the glissile junction, the Hirth 
and Lomer locks and the collinear annihilation. This last reaction oc-
curs between slip systems that share a common Burgers vector. It 
does not produce junctions but rather athermal annihilation over an 
extended range of dislocation line characters [20].
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Figure 3 - (a) Example of periodic dislocation microstructure in a (001) foil 
of thickness 0.2 µm extracted from a simulated volume of Cu deformed 
under multi-slips conditions. (b) Measurements of slip system interaction 
strength 1/2(a ) for different forest dislocation densities -1/2

f( )ρ  including only 
one type of dislocation reaction, i.e., the collinear annihilation and the glis-
sile, Lomer and Hirth junctions.

Calculation of the ija values as a function of the dislocation density 
is a task that we performed with DD simulations [18][6]. As shown 
in figure 3-b, for a reference forest density of 12 -2= 10  mρ , the 
strength of slip system interaction involving the Lomer junction is 
found identical to a standard value calculated with the forest model, 

a 0.35α≈ ≈ . This result reflects the predominance of the Lomer re-
action in the strengthening of fcc single crystals. For the Hirth, glissile 
and collinear types of interactions, the calculated strengths are ap-
proximately 0.6 , α α and 2.3α , respectively. It is interesting to note 
that due to the large value of the collinear annihilation coefficient, we 
explained why, in contradiction with the Schmid law prediction, the 
simultaneous activity of two slip systems shearing the same Burgers 
vector can hardly be observed experimentally [15].

The two remaining ija coefficients are those associated with the inter-
action of a slip system with itself and the interaction between coplanar 
slip systems. DD simulations dedicated to these particular configura-
tions show that the coefficients of the latter are much larger than is of-
ten assumed, close to that associated with the Lomer interaction [5].

Dislocation storage rate and isotropic strain hardening

As illustrated in figure 4, the process of dislocation density storage is, 
under many deformation conditions, directly related to the dislocation 
avalanche feature. For this purpose, the concept of dislocation mean 
free path, which is the distance traveled by a mobile dislocation seg-
ment of unit length before it is stored by interaction with the micro-
structure, is essential. It is intuitive that dislocations mean free path 
decreases with increasing stored density and depends on the strength 
of the dislocation obstacles opposing the dislocation motion. A formal 
modeling of this quantity was performed with DD simulations [3][16]. 
The full expression of the storage rate derived from DD simulations 
is too complex to be reported here. Instead, we restrict ourselves to 
the rather simple form obtained in the absence of dynamics recovery 
processes and for loading conditions imposing symmetric activity of 
the slip system. For each mobile slip system and taking into account 
only forest interactions, we demonstrated that:

2
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Figure 4 - (a) Dislocation avalanche (or strain burst) observed with DD 
simulation in a tensile test of a [001] Cu crystal. This dynamic feature con-
trols the relation between plastic strain production and dislocation density 
storage (b) Determination of the dislocation mean free path coefficients by 
DD simulations for different single crystal tensile test orientation.

In eq. 4, i
cτ is the critical stress for the onset of slip systems activ-

ity and hklK  is an orientation-dependent mean free path coefficient. 
In the hklK  definition, n is the number of active slip systems and

1 2/a is the average value of the interaction coefficients ija . The three 
coefficients 0 00 117 1 08p . ,k .= = and 0 29.κ =  are dimensionless 
constants. They are related respectively to the probability for forming 
a stable junction upon crossing a forest dislocation, to the average 
length of the stored dislocation line segments and to the density of 
junctions in the microstructure. As illustrated in figure 4, value of 
these coefficients could be determined from DD simulations [4].

Equations (3) and (4) constitute two essential building blocks for 
modeling isotropic strain hardening in fcc crystals and in other ma-
terials when strain hardening is dominated by dislocation-dislocation 
interactions. Demonstration was made that their integration on a 
meshed sample using a crystal plasticity FE code allows for predict-
ing quantitatively the first two hardening stages of FCC single crystals 
without fitting procedure [16].

Modeling kinematic strain hardening
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Other obstacles than dislocations can contribute to strain hardening. 
For instance, in a polycrystal with grain size dg, GB distances neces-
sarily limit the mean free path of dislocations. For this reason in a 
polycrystal, an additional storage term accounting for the accumula-
tion of polarized dislocations (GND) must be added to eq. (4). For 
simple dimensional reasons, this term take the form:			 

i
GND GND

i
GB

d k
b rd

ρ
g

=                                                                            (5)

with GBr the shortest distance to GBs and 0 5GNDk .≈  a storage rate 
parameter accounting for a specific organization of the GND density 
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close to a GB. Integration of eq. 5 reproduces the formation of het-
erogeneous densities of GND known as a dislocation pile-up distribu-
tion. Such configurations are essential since they are the basis for 
the notion of back stress and the foundation of many size effects like 
the Hall-Petch mechanism [11]. Again, calculation of the parameters 
monitoring the formation of 3D pile-up configurations against GBs 
has been made with DD simulations. As illustrated in figure 5, we sys-
tematically studied the dislocation microstructures formed against a 
GB with different slip system geometries (i.e. different misorientation 
between slip planes and GB planes). Such simulated configurations 
were identified from a real Cu tri-crystal deformation test (figure 5-a) 
and the analysis of active slip system traces at yield.

Unsurprisingly, simulated 3D dislocation microstructures are differ-
ent from the ideal pile-up configurations discussed in textbooks. The 
back-stress fields we found are complex construction of the long-
range stress fields associated to dislocations sharing the same glide 
plane, but also from many dislocations positioned on neighboring, 
parallel or tilted glide planes.  Nevertheless, averaging the plastic 
strain and the GND density, as function of the GB normal distance, 
shows that simulated 3D dislocation configurations can still be in-
terpreted with a generalized concept of pile-up stress. Hence, a new 
expression for the back-stress associated to 3D GND microstructures 
accumulated against a GB was proposed as function of GBr :

cosi i
GB GND GB GBX ( r )  ( ) b ( r ) rβ θ µ ρ=                                 (6)

In eq. 6, iθ is the angle between the GB and the slip system, and β is a 
geometrical parameter accounting for the organization of dislocations 
in 3D configurations. The latter value was numerically estimated to 37 
from many DD simulation results.

Figure 6 - Comparison between simulated and measured GND density distri-
bution at 0.2% compression strain in a grain part of a tri-crystal (see figure 
5-a for the total geometry).

The predictive ability of eq. (5) and (6) in addition with the equations 
previously defined for isotropic strain hardening was tested with a 
crystal plasticity code in the case of a Cu tri-crystal compression test. 
As shown in figure 6, the GND density distribution at 0.2% strain was 
calculated in a meshed tri-crystal and compared with measurements 
made with the µLaue-XRD technique in the real sample [13]. In the 
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Figure 5 - (a) Schematic of the slip systems activity observed at yield in a Cu tri-crystal compression test (Schmid&Boas slip system notation is used). (b) 
Illustration of the slip system-GB configurations investigated with DD simulations and reproduced from a Cu tri-crystal deformation test. Dimensions of the 
simulated volume are 75 13 10 µm× × . (c) and (d) are respectively, the average profiles of GND density and plastic shear calculated with the DD simulations 
illustrated in (b). Continuous blue lines are solutions of the classical equation of a one-dimensional pile-up profile and the equations (5) holding from the aver-
age dislocation density in the simulated volume.
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early stage of plastic deformation observed experimentally, excellent 
agreement is found for the slip systems activity between simulation 
and experience. In addition, good agreement (within the limits of the 
experimental errors) is found for the GND density amplitude and dis-
tribution (i.e. rotation fields) in the grains.

Conclusion and perspectives

In this paper we have first presented the progress we made in the 
development and numerical implementation of DD simulations. More 
specifically, we emphasized the breakthrough made in the last two 
years in a coupling of DD and FE simulations to solve complex bound-
ary problems. The numerical strategy developed, called the discrete-
continuous model (DCM), is now mature and offer many advantages. 
Then, we have shown that the internal state variables and the mathe-
matical forms used in crystal plasticity calculations can be physically 
justified and identified with DD simulations.  An important effort was 
first devoted to the modeling of isotropic strain hardening in pure fcc 
metals. Recently, we started to investigate more complex phenomena 
at the origin of kinematic strain hardening.

Modeling complex loading with large strain in a multi-phased poly-
crystalline materials is still a long-term goal, but important progress-
es have been made that extend the domain of validity of the existing 
crystal plasticity models. Simulations of the Bauschinger effect and 
cyclic deformation conditions are the next steps. The constitutive 
equations used for these problems involve back-stress formulations 
opening the door to many different interpretations at the dislocation 
scale. A study with the DCM simulation of the collective and dynamic 
properties involved here should gives useful information for design 
methods against fatigue of structural materials [13].

Another important problem in which the capability of the DCM simula-
tion will be exploited is the study of plastic relaxation at crack-tip in 
ductile materials. Here, two main phenomena take place: a dislocation 
microstructure is locally developed to decrease stress concentration 
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ahead of the crack (shielding effect) and the crack tip changes its 
shape due to the emission/absorption of dislocations (blunting 
effect). The DCM is suitable to simulate these two phenomena, on the 
one hand the proper boundary conditions can be imposed to com-
pute the mechanical equilibrium in a material including a crack and on 
the other hand the evolution of the dislocation microstructure can be 
precisely investigated. Figure 7 shows one of the first results obtained 
using the DCM. Here a Cu single crystal is deformed in the z direction 
to open a crack in mode I. The crack plane is normal to the (100) di-
rection with a crack tip parallel to the [010] direction. Panel (a) shows 
how the dislocation pre-existing in the sample reacts to the stress 
field ahead of the crack tip and rapidly build a plastic zone.  The elas-
tic shielding of the dislocation microstructure that works to reduce 
crack opening is shown in panel (b). Ongoing work is dedicated to 
this problem for cyclic deformation conditions and in a polycrystalline 
material to better understand grain size effects 

a) b)

Figure 7 - (a) Example of a dislocation microstructure formed at a crack tip 
in a Cu sample loaded in ModeI. The crack location is the thin white segment 
and the dislocation lines are plotted with colors according to their slip sys-
tems. (b) The elastic shielding effect caused by the dislocation microstruc-
ture is illustrated in a plane normal to the crack tip. The plotted quantity ZZσ
is the sum of the dislocation stress fields in the sample and is clearly opposed 
to the crack opening (Courtesy of L. Korzeczek, PhD work).
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