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An Overview of Probabilistic Performance 
Analysis Methods for Large Scale 

and Time-Dependent Systems

Various algorithms have been proposed to evaluate the performance of large scale 
and time-dependent systems. Probabilistic approaches based on computer ex-

periments have been shown to be more efficient than classical approaches such as 
Monte-Carlo simulations for a various number of practical cases. This article thus gives 
an overview of the latest trends in the field, applied to the performance evaluation of 
large scale or time-dependent system. Different realistic applications in the aerospace 
domain are considered.

Introduction

In the aerospace and defense domain, realistic systems such as de-
fense architecture or air traffic management are very time consuming 
and difficult to simulate with accuracy. Evaluating system behavior in 
order to improve performance or to evaluate alternative system de-
sign strategies thus requires system performances to be predicted 
for a given set of inputs or parameter values. To remain computation-
ally feasible, this prediction requires a specific computational physics 
model, performance evaluation methods and uncertainty management.

In the context of model uncertainties, simulation tools are required to 
directly include uncertainty in system components and architecture, 
providing a set or a distribution of possible outcomes, rather than a 
single one. Uncertainty is considered as a measure of how large the 
deviations of a process from a predicted behavior can be. The classi-
cal approach consists in directly simulating the model using Monte-
Carlo methods. A large number of samples of the parameter vector 
subject to uncertainty are randomly chosen, yielding a correspond-
ingly large number of simulations, which may result in intractable 
complexity. Various alternatives have been developed to drastically 
improve crude Monte-Carlo performances.

This paper presents a review of a wide range of probabilistic methods 
that have been developed to estimate complex system performances. 
In the first section, Monte-Carlo methods are considered, since they 
can be applied in various frameworks. The last two sections describe 
alternative techniques that overcome some of the limitations of the 
Monte-Carlo approach.

Monte-Carlo approach

There are several approaches for taking into account parametric un-
certainties within a system evaluation: interval analysis, fuzzy sets, 

fuzzy logic or possibility theory [1][29][107][22]. However, the prob-
abilistic approach is the one that offers many powerful theoretical 
and numerical tools. The Monte-Carlo approach [83][85] is based on 
modeling each uncertain parameter through a random variable. The 
system then becomes a random parameter system and the output 
itself becomes a random variable ( )X w , which must be characterized 
through its probability distribution ( )Xp w . This may prove to be a 
very difficult task since there is almost never an analytical expression 
of the output distribution. The outcomes are usually statistical quanti-
ties, expressed as the mean of some output function [ ]( ( ))E f X w
derived from integrals again involving the probability distribution:

[ ]( ( )) ( ) ( )XE f X f x p x dx= ∫w

The Monte-Carlo approach provides an estimation of this determinis-
tic integral, by using repeated random samples: one does not need to 
know the output probability distribution as long as samples are avail-
able. This method is based on the Law of Large Numbers.

A natural and important question that arises is related to the conver-
gence rate of this method. The use of the central limit theorem shows 
that the convergence rate is of order n , where n is the number of 
samples. However, the convergence rate is independent of the size of 
the random variable, rendering this approach very efficient for high 
dimensional problems involving a large number of random ( )X w
parameters. Another nice feature is that no smoothness assumption 
has to be made for the function f . The implementation of the Monte-
Carlo approach is straightforward, since it acts outside of any given 
numerical code or procedure: one does not need to modify complex 
industrial codes, or even have any knowledge of them, in order to 
use it. This property is a key feature, which explains the popularity 
of the approach. The only requirements are, first, to be able to fit the 
probability distribution to each uncertain parameter introduced in the 
system and, secondly, to be able to generate random samplings for 
these distributions. 
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An alternative, known as Quasi Monte-Carlo methods, is to replace 
the random samples by low discrepancy sequences of numbers. 
However, error bounds are rather difficult to calculate and it appears 
that such methods should be used for a rather small number of un-
certain parameters [69].

The effects of structural uncertainties have been studied in the aero-
elastic domain for more than 30 years [74]. As an illustration of the 
standard Monte-Carlo method, let us consider the problem of evaluat-
ing the impact of the geometrical design defaults of an airfoil on the 
pressure distribution. Geometrical defaults are modeled as a Gauss-
ian random deformation field acting along the airfoil. Figure 1 illus-
trates a particular simulated geometry.

 
Figure 1 - Geometrical design defaults of an airfoil on the pressure distribution
 
Figure 2 shows the collection of results obtained by running the 
Monte-Carlo method with 200 samples of the airfoil geometry. From 
those results, statistics can be derived, such as the mean value and 
standard deviation of the shock position, as well as statistics on the 
stability of the fluid structure coupled system.

Figure 2 - Monte-Carlo estimation of the shock position

Due to their slow convergence rate, Monte-Carlo methods require a 
high number of samples. When accurate simulations are very time-
consuming, surrogate models for representing the initial system or to 
assess the dynamic propagation of uncertainty are efficient tools for 
a limited computing budget. Estimation of very low quantiles may rule 
out a classical Monte-Carlo approach, since it would require too large 
a number of simulations

Black box system analysis 

When only the resulting outputs are of interest, the black box model 
can be a crude description of the system. It is characterized by a cer-

tain number of input parameters and a few equations that use those 
inputs to give a set of outputs. This type of model is usually deter-
ministic, so that the same outputs are always obtained for a given 
set of inputs. When the inputs have random behavior, different issues 
and questions can be raised. How can the system performance be 
evaluated if the simulation code is time consuming? What are the 
most influent inputs of a system on its output values? How can the 
uncertainty on the inputs be propagated? How can events with low 
probability (e; g. rare events) be generated? 

Meta-modeling 

A potential black box representation of a complex system can be sup-
plied by surrogate models, such as response-surface methodology, 
Kriging, radial basis functions, splines or neural networks [43][93]
[104][26]. The idea is to substitute the evaluation of some simple 
function for the costly simulation of the complex system model, in 
response to a possibly high-dimensional vector of inputs [80]. For 
example, a prediction of the simulation value over a continuous space 
can be achieved by combining a space-filling sampling and an accu-
rate interpolation meta-model over the space of interest. It is notably 
a very efficient strategy when simulation is time consuming. Figure 
3 shows the fall-back positions of a space launcher stage, obtained 
with complex computer code or with a neural network learned from 
the complex computer code. Circles of Equal Probability (CEP) esti-
mated in both cases are comparable, but the computation time is very 
low in the case of neural networks. Another application is the search 
for a global optimum of a criterion, computed via expensive simula-
tion, by sampling only in promising regions of the search space. The 
surrogate model can then be adjusted accordingly to refine the esti-
mate of this optimum.

 

Figure 3 - Fall-back zone estimation of a space launcher stage

Among possible surrogates, Kriging [57][45] models the unknown 
function as a Gaussian process, which could be seen as the gener-
alization of finite-space Gaussian distributions to a function space of 
infinite dimension. A correlation function is used to model the influ-
ence of the value of the function at one point on its value at another 
point, depending on a measure of distance between them. This cor-
relation function and its parameters should be chosen according to 
smoothness assumptions on the function to be approximated. Based 
on these foundations, Kriging provides a continuous interpolation that 
is the best linear unbiased prediction of the unknown function. A very 
interesting property is the possibility to compute the variance of the 
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prediction error at any predicted point, which can be interpreted as a 
measure of confidence in the interpolation (see figure 4 , for a simple 
one-dimensional example). Kriging can also be seen as a linear pre-
dictor with a weighted sum on a particular basis of functions, which 
corresponds to the prior chosen correlation.

Figure 4  Kriging interpolation with 5 sample points

Moreover, the property of computing the confidence measure has 
been further exploited to design the so-called efficient global opti-
mization (EGO) algorithm [43]. Its objective is to optimize a crite-
rion, computed via a complex or unknown computer simulation, by 
iteratively sampling new points in the input search space, where the 
criterion should be evaluated so as to enhance the estimate of the 
global optimum.
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Figure 6 - Tuning of a fault diagnosis method with 2 parameters. The cost 
represents the trade-off between false-alarm and non-detection rates - explo-
ration of the parameter space by EGO, the estimated optimum is in red

This algorithm has been applied to various design problems, such 
as multidisciplinary design optimization [92], sensor analysis [62], 
active recognition [20] (see figure 5) and automatic tuning of fault 
detection methods [58] (see figure 6). This strategy has provided reli-
able results with very small samplings for the applications mentioned.
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Sensitivity Analysis

Using black box or surrogate models, determining what the most in-
fluent inputs of a system on its output values are remains a key point. 
This sensitivity analysis deals with how the uncertainty in the output 
of a statistical model can be linked to different variations in the inputs 
of the model. Figure 7 illustrates an example of sensitivity analysis, 
applied to the study of space launcher stage fall-back positions. The 

Box 1 - Design under uncertainty with Kriging

Available knowledge on uncertainties can be incorporated in different ways into Kriging models, to achieve robust design. In the case of 
noise on the output of the simulation to be approximated, a Gaussian distribution can be taken into account through the covariance that 
is at the basis of the Kriging prediction [81]. The resulting linear prediction incorporates the amount of noise to build a smooth fitting 
function and is thus no longer an exact interpolation of the data. This makes it possible to work with a filtered model from noisy observa-
tions, at a low computational cost [100].

For optimization purposes, a generic model is to consider that the computer model under study depends on two types of inputs: control 
variables and environmental variables [88]. The control variables are those on which optimization is carried out, while the environmental 
variables are uncontrollable disturbances that affect performance. For instance, a control law or an estimation filter for an aeronauti-
cal vehicle are subject to measurement noise, strong uncertainty on the model parameters, variations of the atmospheric conditions 
(temperature, pressure) and wind turbulence. In such a case, a design of the control variables that is robust to the effect of these envi-
ronmental variables is sought. When dealing with robust design, a probabilistic or deterministic point of view can be adopted [4]. In the 
probabilistic framework, a distribution of the environmental variables is assumed and performance is assessed by the expected value of 
some robustness measure. However, a design that is good on average may prove to be poor for particular values of the environmental 
variables. In the deterministic framework, it is assumed that the environmental variables belong to some known compact set and perfor-
mance is assessed by the worst possible value of some robustness measure. The design that is best in the worst case is obviously con-
servative on average, and the choice between the probabilistic and deterministic points of view should be made on a case-by-case basis.
In the probabilistic context, some papers have addressed robust Kriging-based optimization with respect to environmental variables. 

In [11][53], Monte-Carlo simulations are performed for each sampled value of a space-filling design of the control variables and a Krig-
ing model is fitted on the resulting mean and variance, before achieving optimization by classical algorithms. In [54], the EGO algorithm 
has been extended to take into account a probability distribution for the environmental variables. The underlying idea is to minimize a 
weighted average of the response over a discrete set of values for the environmental variables.

In the worst-case context, an algorithm has been proposed in [59] to deal with environmental variables for the robust optimization of 
black-box functions evaluated by costly computer experiments. It combines EGO with an iterative relaxation procedure, to provide an al-
gorithm for the minimax optimization of black-box functions. Relaxation makes it possible to take into account continuous infinite spaces 
for both the control and the environmental variables, unlike the discrete probabilistic formulation mentioned before.

All of these algorithms have shown promising results and are especially well suited when a robust design is required for an expensive-
to-simulate process, unlike most global-purpose optimization algorithms that require a thorough exploration of input spaces.

color of the different samples varies with the input value. Inertial mea-
surement appears to be the most influent factor on the fall-back posi-
tion. Sensitivity analysis methods allow quantitatively similar results 
to be obtained in a rigorous manner. Two main approaches have been 
developed for that purpose.

Figure 7 - Influence of two inputs on fall-back positions
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Global sensitivity [40][96][87] analysis focuses on the variances of 
model outputs and more precisely on how the input variability influ-
ences the variance of a given output [38]. It makes it possible to 
determine which parts of the output variance are due to the different 
inputs, with the estimation of Sobol indices (see e.g. [95][86] for 
a detailed description). They are major tools in sensitivity analysis, 
since they give a quantitative and rigorous summary of how the dif-
ferent inputs influence the outputs.

Local sensitivity [67][1][79] analysis provides information on how 
small perturbations in a neighborhood of an input space value influ-
ence the model output value. Since local sensitivity analysis is not 
robust to non-linear effects and input interactions, it is often less used 
than global sensitivity analysis. Moreover, a global sensitivity method 
makes it possible to take into account the interaction between input 
values. Nevertheless, the local sensitivity analysis method has the ad-
vantage of requiring fewer simulations than the global method, when 
running the model is very time consuming.

Uncertainty propagation

Uncertainty representation under the form of a probability density 
function has been exploited in several methods for analyzing and 
propagating uncertainties in systems, such as interval analysis, Mon-
te-Carlo and quasi Monte-Carlo techniques. However, none of these 
approaches is able to allow for the intrinsic nature (in terms of contin-
uous random distributions) of the assumed stochastic uncertainties. 
To fill this gap in many methodologies, the Polynomial Chaos Theory 
(PCT) has been recently used to tackle this problem. This theory is 
based on the principles stated initially by Wiener in 1938 (see [106]) 
and then justified by Cameron and Martin in 1947 (see [7]). More re-
cently, further research work has shown the effectiveness of the PCT 
in many engineering applications subject to stochastic uncertainties, 
such as mechanics, heat convection, fluid dynamics or automatics 
[24][30][55][103]. A recent wide survey of the theoretical back-
ground, including some practical results of the PCT, is available in 
[99]. The basic idea of the PCT consists in modeling any probabilistic 
uncertain system (static or dynamical) as an equivalent deterministic 
one, in a higher dimensional space, where the explanatory variables 
of the initial stochastic model are decomposed on a Hilbert basis of 
L2, generated by the polynomial representation adopted to approxi-
mate any uncertainty of interest. This theory is a powerful alterna-
tive to Monte-Carlo and/or quasi Monte-Carlo methods in propagating 
probabilistic uncertainties and estimating more accurately the proper-
ties of any stochastic static or dynamical system, in terms of mean 
and variance.

An illustrative application of the PCT is provided in figure 8 , in which 
an AIRBUS A340-600 lateral flight dynamics linear model has been 
expanded over 3 uncertain aerodynamics derivatives. This figure 
compares the poles dispersion of the natural modes of the aircraft 
obtained by both Monte-Carlo and PCT methodologies and shows 
the relevance of the PCT for estimating the probabilistic properties 
of stochastic systems. In addition, the application of the PCT using 
Galerkin projections presents a significant computational advantage 
over Monte-Carlo and quasi Monte-Carlo methods.

 Figure 8 - Pole dispersions for Dutch Roll and Spiral stability modes
Comparison between Monte-Carlo and PCT

Rare event estimation

Monte-Carlo or quasi Monte-Carlo representations are well suited for 
providing information on events whose associated probabilities are 
not too low. For very seldom observed events, such as the collision 
probability between two aircraft in airspace, these approaches do not 
lead to very accurate results. Indeed, the number of available samples 
is often insufficient to accurately estimate such low probabilities (at 
least 106 samples are needed to estimate a probability of order 10-4 

with 10% relative error). It is therefore necessary to develop appro-
priate techniques to estimate these probabilities, requiring a fewer 
number of samples. They can be divided mainly into two categories: 
probability density function tail parameterization techniques based on 
extreme value theory and simulation techniques such as importance 
sampling or importance splitting.

Extreme value methods are very useful when it is not possible to ob-
tain, or simulate, new samples. Finance [31] is the main domain of 
application of the extreme value theory, but some applications have 
also been proposed in the world of engineering [73]. There are two 
main kinds of model for extreme values. Block maxima models [25]
[52][19] are notably used for the largest observations collected from 
a high number of identically distributed observations. It allows the 
law of the maximum of a sample collection to be determined. A more 
recent group of models is the peaks-over-threshold (POT) approach 
[18][60][72]. It allows the law of the samples to be determined con-
ditionally to exceed a high threshold. POT models are generally con-
sidered to be the most useful for practical applications, due to their 
more efficient use of the (often limited) data on extreme values.

Simulation techniques require the ability to simulate new samples. 
Importance sampling is the most well-known rare event simulation 
technique. It is designed to reduce the variance of the Monte-Carlo 
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estimators for a given sample size. Importance sampling consists in 
generating random weighted samples from an auxiliary distribution 
rather than the distribution of interest. The crucial part of this algo-
rithm is the choice of an efficient auxiliary distribution that must be 
able to simulate additional rare events. Various optimizations of auxil-
iary distributions have been described in [39][84][14][56][109][66]
[63]. Figure 9 shows different iterative importance sampling auxiliary 
densities for the (1-10-7)-quantile estimation of a centered reduced 
Gaussian density. The principle of importance splitting [47][9][8][64] 
is quite different. Instead of estimating one probability through a very 
costly simulation, one considers the estimation of several conditional 
probabilities that are easier to evaluate by simulation. The sought 
probability is then obtained with the use of the Bayes theorem. Im-
portance splitting is notably very adapted when the simulation budget 
is important and the probability to be estimated is very low (<10-6).

Figure 9 - (1-10-7)-Quantile estimation of centered reduced Gaussian variable 
with non-parametric adaptive importance sampling 

Application areas of rare event estimation methods in reliability and 
safety engineering are very broad and are not restricted to aero-
space. Among the applications currently dealt with at Onera, figure 
10 illustrates the fall-back zone estimation of a space launch vehicle 
[65] and figure 11 presents the collision probability map estimation 
between aircraft in uncontrolled airspace with rare event methods. 

Figure 10 - Mean (solid line) and standard deviation (dashed line) of a 
launcher stage fall-back zone with importance sampling simulations 
 (95 % =green, 99% =blue and 99.99% =red)
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Box 2 - Estimating satellite versus debris collision 
probabilities via the adaptive splitting technique

Spacecraft collision still does happen seldom, but the loss of 
a satellite cannot be afforded. This high risk therefore must be 
addressed carefully. To support the decision to start a colli-
sion avoidance maneuver, a dedicated tool is the probability 
of collision between the debris and the satellite [44]. Crude 
Monte-Carlo could be a way, if it could cope with very small 
probabilities, say 10 - 6, within the available simulation budget 
and time. The methodology in use nowadays is a numerical 
integration made tractable by physical hypothesis and numer-
ical approximation [10]. An efficient alternative is to consider 
an importance splitting technique, since this avoids the dif-
ferent hypotheses needed for the numerical integration and 
clearly outperforms CMC with respect to rare events, as is 
illustrated in table B2-01. However, importance splitting re-
quires tuning. Some experience based empirical tuning rules 
are notably proposed in [71].

Collision probabiity estimate 
(relative error)

Mean sample number

Monte-Carlo 1.1 10 - 6 (172%) 300000

Importance 
Splitting

1.9 10 - 6 (32%) 309000

Table B2-01- Importance splitting-Monte-Carlo comparison

Time-dependent system analysis

Performance evaluation can also be sought for a time-dependent 
system. Examples of such systems include the weather evolution, 
stock market, plane trajectories. In the following, different methods 
to deal with time-dependent stochastic process of complex systems 
are presented.

Multi-model representation for performance analysis

The first approaches for characterization and analysis of dynamical 
system performances have been derived from the safety literature. 
Most of them are based on combinatorial approach such as fault 
or event trees or reliability diagram (see e.g. [42][82]). Using these 
methods allows the combination of events that lead to a specific sys-
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tem behavior to be identified. However, basic fault trees are not well 
suited for modeling complex systems with strong dependencies be-
tween the system components. The assumption of component inde-
pendence is a powerful feature of fault trees, but is extremely restric-
tive and may lead to erroneous results.

In order to provide a realistic evaluation of the system performances, 
the model should include a representation of the dynamical interac-
tion between its physical parameters and the functional behavior of its 
components. In the 80’s, Davis presented the Piecewise Determin-
istic Markov Processes (PDMP) [15][17][16]. This class of models 
constitutes a well-suited framework to represent dynamical systems 
subject to (expected or unexpected) changes in their behaviors. The 
description of the system is provided in the form of a set of small 
models, each related to a different operating behavior mode [108]. 
The representation is based on two types of variables, one represent-
ing the dynamical states of the system and the other representing the 
mode, usually with discrete values. The states are used for the deter-
ministic representation of the system evolution, whereas the mode 
indicates the suitable characterization of its behavior. The change in 
the functioning is reflected in the modification of the mode value.

Representing a complex system under this form requires, firstly, to 
split it into subsystems or components. It is then possible to identify 
all of the possible regimes and dynamical models for the subcompo-
nents and to define whether the change of mode from one behavior 
to the next is deterministic or probabilistic. The probabilistic jumps 
can be modeled using a Poisson law and the deterministic jumps are 
obtained for a given time, or when the state components satisfy a pre-
defined criterion. Given a time period, it becomes possible to simulate 
the whole trajectory of the entire system. Evaluating a performance 
criterion is then performed by simulations, based on indication on the 
characteristics of the Poisson law and the modeling of the piecewise 
deterministic representation. This modeling can also be used to deter-
mine suitable control, for example, for reconfiguration purposes [13].

Markov Chain

Another representation of the dynamic evolution of a random process 
is a Markov chain, which consists in a collection of random variables 
( nX  where n  is a positive integer)[17][61]. Namely, if oX  is the 
initial state of the process, nX represents its state at the thn  step, the 
result of n random moves (transitions) in the state-space. In engineer-
ing applications, steps are usually taken as a measure of time.

A Markov Chain usually refers to a discrete random process, with the 
Markov property stating that the conditional probability distribution for 
the system at the next state, given its current state, depends only upon 
the current state (i.e. the process has no memory). If P is the prob-
ability distribution for the system at a given state, to move to the next 
one (the transition probability), the following relation holds (according 
to the Markov property): 
( ) ( )1 1 1 1 1 1, ...,n n n n n n n nP X x X x X x P X x X x+ + + += = = = = =

A Markov chain is fully characterized by its state-space and transition 
probabilities.

Among specific properties, usually highlighted, a Markov chain is said 
to be irreducible if it is possible to get to any state from any state; it is 
said to be k -periodic if any return to a given state occurs in multiples 
of k steps; a state is said to be transient if the probability that the tra-

jectory of the random process starting from this state has a non-zero 
probability of never going back to this state (otherwise, the state is 
recurrent); a state is said to be ergodic if it is aperiodic and recurrent 
(with a finite mean recurrent number of steps).

Finally, it is usually impossible to predict the exact trajectory of a 
Markov chain, since it is a random process, nevertheless in specific 
case it is possible to predict the statistical properties of the Markov 
sequence. For example, an irreducible and aperiodic Markov chain 
will reach a stationary probability distribution ( ). . ~ni e Xp p . Many 
algorithms allow Markov chains with the desired statistical properties 
to be constructed, thus offering the ability to generate sequences of 
random numbers that reflect targeted distributions. These processes 
(namely Monte-Carlo Markov Chains) have been very useful in Bayes-
ian inference and many other fields. An example of a Markov chain is 
given in figure 12 to analyze the random trajectory of a commercial 
flight [41][78].  

 

Figure 12 - Commercial flight trajectory modeled with a Markov chain

Bayesian Networks

The Bayesian Network (BN) theory is a formalism based on the Graph 
Theory and the Bayes probabilistic Theorem. It is used for represent-
ing systems or entities in a common framework. More specifically, 
using a Bayesian Network is a way of describing any system or entity 
through a structured probabilistic approach based on both qualitative 
and quantitative information. It brings the ability to unify various kinds 
of knowledge into a single representation. On the one hand, quali-
tative considerations are translated into a specific Directed Acyclic 
Graph, while, on the other hand, quantitative data mining makes it 
possible to parameterize and quantify the correlation links making up 
the network, through a Joint Probability Distribution.

Figure 13 - Example of Bayesian Network used to model a threat intercep-
tion by two interceptors
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Directed Acyclic Graphs (as illustrated in figure 13) consist of nodes 
and directed arcs. Nodes represent discrete random variables, while 
the arcs show the causal or statistical interaction between the vari-
ables. These diagrams describe a set of conditional independence 
assumptions corresponding to the graph theoretic notion of d-sepa-
ration. If two nodes X and Y are d-separated, (i.e., if every path be-
tween X and Y is “blocked” by a 3rd variable Z), then X and Y are 
totally independent, given Z [36] (for example, in figure 13, N1 and 
N5 are independent, given N3). Whereas two connected nodes have 
direct causal relationship and one can specify the local conditional 
probabilities in a Conditional Probability Table (CPT) for each node. 
For a given node, the CPT aggregates, for each possible state of the 
variable associated to this node, all of the conditional probabilities 
with respect to all of the combinations of values of the variables as-
sociated to each parent node. Nodes with no parents (N0, N2 in figure 
13) are called root variables and their CPTs are filled up with marginal 
“a priori” probabilities.

Under these assumptions, the joint probability distribution P  of ran-
dom variables (Xi) can be factorized as follows:

[ ] ( )1 2
1

, ,..., |
n

n i i
i

P X X X P X Parent X
=

=   ∏
. 

In the case of the BN in figure 13, the joint probability distribution 
of the random variables X0, X1, X2, X3, X4, X5 is hence given by: 

[ ] [ ] [ ] [ ]
[ ] [ ]
[ ]

0 1 2 3 4 5 0 2 1 0

3 1 4 2 3

5 3 4

, , , , , . . |

. | . | ,

. | ,

P X X X X X X P X P X P X X

P X X P X X X

P X X X

=

The information required to build the network structure and to provide 
prior probabilities and Conditional Probability Tables can be supplied 
by expert knowledge or by feedback on the use of the physical sys-
tem itself. With no observation, the computation is based only on a 
priori probabilities. Any new observation, called evidence, enhances 
the accuracy of the system BN description.

Inference algorithms designate the mechanisms used to propagate 
the probabilistic information throughout the entire network. These 
consist in computing probabilities for all of the unmeasured nodes, 
given the information available about the states of the observed nodes 
(evidence). Algorithms may be sorted into two main families. The first 
one encompasses the so-called exact inference methods. Ref. [46] 
and [90] address the Clustering algorithm, which uses the conditional 
independence properties contained within the network to compute 
a posteriori exact probabilities. The second one relates to approxi-
mate inference algorithms, such as Logic sampling [37], Likelihood 
weighting [27], Backward sampling [28], Self-importance [91] and 
Heuristic importance [91]. These algorithms estimate probabilities 
through multiple draws among the set of possible states for each 
variable of the network.

Different extensions to BN have been proposed to handle, for exam-
ple, temporal aspects, logical relations, or the modeling of complex 
systems. 

For a complex system composed of a high number of components 
or subsystems, the structure of the corresponding BN can be hard to 
deal with. Object Oriented Bayesian Networks (OOBN) [105] provide 
a methodological framework to decompose a complex BN into sev-

eral hierarchical layers. Therefore, a complex system can be more 
easily modeled by an OOBN from functional analysis and decomposi-
tion into physical components.

To model dynamical systems, a temporal dimension can be added 
to BN, leading to Dynamical Bayesian Networks (DBN) [68] where 
random variables are indexed by time. Information about the ini-
tial state ( ) ( )( )1 0 ,..., 0nX X is given through a prior probability

( ) ( )1 0 ,..., 0nP X X    . A BN is then used to represent the transition 
probability by ( ) ( ) ( ) ( )1 1,..., | 1 ,..., 1n nP X t X t X t X t− −   defining 
the temporal probabilistic dependencies between nodes of two time 
slices. In the particular case of dynamical systems, for which the 
state evolution can be represented by a discrete time equation, the 
physical knowledge modeled by this state equation is directly taken 
into account in the formulation of the conditional probabilities associ-
ated to each random variable.

ATLAS method

ATLAS (Analysis by Temporal Logic of Architectures of Systems) is a 
method developed at Onera aimed at providing a quick macroscopic 
tool for the probabilistic performance assessment of time-dependent 
systems.

The most notable frameworks dealing with stochastic approaches 
for time-dependent systems are generally based on one of the three 
following approaches [5]: Bayesian networks [48], described in the 
previous section, stochastic Petri nets [23][70] and fault trees [21]
[101] or related formalisms [10][98]. Among these approaches, 
those based on stochastic Petri nets, though interesting, require 
heavy simulation (combined for example with Monte-Carlo methods). 
Although the Bayes network approach is interesting, large Bayes-
ian networks reflecting complex systems are difficult to design and 
maintain. Finally, fault trees consist in a method in which the potential 
causes of a system hazard are recursively organized into a tree struc-
ture reflecting causality - which is a crucial notion in the framework of 
safety analysis - trying to figure out all of the credible ways in which 
the hazard may occur.

The ATLAS approach is dual here and does not focus on the reliability 
of the system, but rather on its performance - although both are of 
course related. Therefore, one does not consider the sets of causes 
that lead to a failure, but rather those that lead to a success. This 
is determined from the functional analysis of the system. Temporal 
consistency is represented by a modal logic, allowing the expression 
of time. This can be linked to the fault tree approaches using time 
propagation such as [35][89] based on the Interval Temporal Logic 
and the Duration Calculus Interval ([2][110][33][34]).

Contrary to these approaches, the ATLAS method simultaneously 
combines the time and probability aspects. It was first introduced 
to evaluate the performance of a defense system [96] and extended 
to other fields of applications. The detailed method description can 
be found in [6], [50] and [49]. It was also successfully applied to 
system analysis in various contexts, such as ballistic missile defense 
performance assessment [3] and the assessment of space system 
vulnerability to debris [51].

The determination of the probability of success and necessary delay 
of a given dynamic system using the ATLAS method is analyzed us-
ing the following steps. The system is described as a tree-shaped 
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In order to take into account the temporal aspect of the performance, 
the success probability associated with each function is represented 
as a function of its starting times ( )1i i ms

≤ ≤
and final times ( )

1j i n
t

≤ ≤
. 

This representation, called the function availability performance, is 
illustrated in figure 15 , where the abscissa represents the initial time; 
the ordinate represents the final time and the applicate represents the 
probability.

Figure 15 - A function availability performance

Box 3 - Using ATLAS for the assessment of a Ballistic Missile Defense system

Ballistic missile defense (BMD) architecture performance (threat neutralization probability) evaluation is a complex problem. It is there-
fore of interest to evaluate it without using Monte-Carlo simulations that may prove very costly. The system is described in figure B3-1.

Figure B3 - 1- A ballistic missile defense system

Using the ATLAS methodology, the elementary functions consist, for example, of “Choose launcher” or “Wait for shot in salvo”, as 
presented in figure B3-2 . Elementary temporal probabilities have been provided by experts from the relevant domain.
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temporal combination of elementary functions (see figure 14) with a 
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Figure 14 - A tree reflecting the (partial) behavior of a space system 

In this tree, the leaves, which are said to be “elementary functions”, 
are distinguished from other functions. They are assumed to be pair-
wise independent and they represent the input point of ATLAS, in the 
form of the availability performance defined in the next subsection.
The definition of this tree is a key point of ATLAS and must include the 
two following features: first, the identification of independent elemen-
tary functions and, second, temporal links between these functions. 
The first feature is generally done by functional analysis, the depth 
of the decomposition depending on the purposes of the study. The 
second one is generally done using temporal flow diagrams, using 
a notion of triggering and concluding events, where patterns corre-
sponding to operators are identified (see [49] for further details). How 
such a tree may be obtained is illustrated in box 3.
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Since it is a discrete probability of success of the elementary function, 
this performance notion satisfies: for any ( )F

1,  ,   1i j n i js s t≤ ≤Σ ≤p
(as one considers potential failure, this sum may be strictly less 
than 1). This accumulation represents the overall probability of suc-
cess of a function F, which could be expressed for all combination of 
m starting time and n end time by ( )F

1 1 ,  /i m j n i js t m≤ ≤ ≤ ≤Σ Σ p .

Another way to view this performance is to consider that a service 
consists in answering an order given at some instant, within a spe-
cific answer delay, which leads to the following performance notion: 

( ),F s tp , which represents the probability that function F will pro-
vide, at time t, an answer to an order received at time s. In this sense, 
the performance may be seen as a probability of t being a final time 
value for each given initial time.

Once the user has defined these characteristics for elementary func-
tions, the purpose of ATLAS is to combine them into a temporal logi-
cal way, satisfying the linking constraints expressed by the tree, in 
order to obtain the availability performance for the full system and the 
intermediate nodes (see [49] for further details). These performances 
may be calculated quickly over a large family of scenarios, allowing 
post-treatments suited to the purposes of the study.

ATLAS is an innovative approach for system assessment, interest-
ingly combining temporal and probabilistic aspects. It has been com-

pared to Monte-Carlo simulations and to dynamic Bayesian networks, 
and has proved to provide the same results but within a shorter time, 
since the probability for each pair of starting and finishing times is 
already set. Its system-engineering-oriented point of view facilitates 
its use by system specialists and its output for the expected perfor-
mance at each node of a functional decomposition is also a poten-
tially valuable tool for system design.

New notions are currently considered for use in the ATLAS frame-
work, such as resource consumption evaluation.

Conclusion

In this article, we have presented a large spectrum of methods for 
evaluating performances of complex systems that could significantly 
improve the results obtained with classical algorithms. It is neverthe-
less sometimes difficult to determine a priori which techniques would 
be the most efficient for a particular case. A major feature is the type 
of knowledge available on the system behavior. Otherwise, simula-
tion budget, dimension of the problem or density models also play 
an important role in the selection of the most efficient and suitable 
methods. Previous analysis of the complex system characteristics 
must thus be performed before choosing an appropriate approach 
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Acronyms 

CEP (Circles of Equal Probability)
EGO (Efficient Global Optimization)
PCT (Polynomial Chaos Theory)
POT (Peaks-Over-Threshold )
PDMP (Piecewise Deterministic Markov Processes)
BN (Bayesian Network) 
ATLAS (Analysis by Temporal Logic of Architectures of Systems)
CMC (Crude Monte-Carlo)
BMD (Ballistic Missile Defense)
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