
Issue 4 - May 2012 - Simulation of Systems of Systems
 AL04-14 1

Mastering Complexity

P. Carle, R. Kervarc, R. Cuisinier,
N. Huynh, J. Bedouët, T. Rivière,
É. Noulard
(Onera)

E-mail: patrice.carle@onera.fr

Simulation of Systems of Systems

Complex systems have become a particular area of interest in the past years and the
study of such systems, seen as a whole, has yielded many and varied approaches.

One of the difficulties frequently encountered is that such systems display emergence,
i.e. their global effect or behavior is greater than the sum of the behaviors of their
agents and depends strongly on the interactions between these agents. Simulation
is a very interesting approach for this study, since it allows focusing on the dynamic
study of the system, thus pointing out these behaviors and interactions. Moreover, it is
particularly interesting for aerospace systems, which are nowadays clearly studied as
complex systems, since these systems are generally poor candidates for real experi-
mentation, due to many diverse reasons (e.g. cost for space systems, criticality in
terms of human life for air transport systems, etc.). Hence, they must be studied quite
thoroughly before their full design or realization is possible and simulation plays an
important part in this. This paper presents methods that can be used to study complex
systems by simulation, as well as some techniques that take into account their specific
nature, in particular distributed simulation, a paradigm quite intensively used at Onera.
It also deals with the difficulties that may be encountered in setting such large simula-
tions up and also addresses the problem of data in such a large simulation, from the
handling to the exploitation.

Introduction

“System” is a very generic term, which is used in all fields of sci-
ence and may describe practically anything studied: roughly speak-
ing, a system is a collection of elements in interaction, this collection
being considered as an object. Systems may be very complicated,
but, regardless of that, an orthogonal notion of complex system has
emerged over the past years. While there is no generally accepted
definition of what a complex system is, there are some essential prop-
erties that a system needs in order to be considered complex, upon
which most authors agree. Mostly, the three main required properties
are the following:
	 •	A	 complex	 system	 consists	 of	 a	 significant	 number	 of	 inter-
acting entities (often called agents), which can each be considered
independently (and may potentially have diverging purposes).
	 •	 A	 complex	 system	 exhibits	 emergence, i.e. global behaviors
that are greater than the sum of the behaviors of each agent, or at
least that are difficult to predict from the knowledge of the individual
behaviors of the agents.
	 •	A	complex	system	is	not	centralized:	the	emergent	behaviors	do	
not result directly from the coordination of a central controller (which
does not necessarily exclude the presence of central supervising sys-
tems).

Such systems may be found in many various branches of science:
biology (e.g. eusocial insect colonies), medicine (e.g. epidemic
propagation), engineering (e.g. system design in various fields such
as aerospace), chemistry (e.g. molecular self-assembly), sociology
(e.g. human networks), computer science (e.g. grid computation),
economy (e.g. stock market), etc. Since they encompass very dif-
ferent aspects, they may be studied by various different approaches,
which can be roughly divided into two families: static approaches,
focusing rather on the properties of the system and dynamic ap-
proaches, focusing rather on its behavior.

These dynamic approaches are especially interesting because of the
very nature of complex systems, in which the interactions between
components make new behaviors emerge. In this regard, simulation
is an interesting tool, since it allows data reflecting emerging behav-
iors to be produced. This data may be used for various purposes,
from learning and prediction to the analysis by various methods of the
produced data for assessment purposes.

Simulation is an interesting axis for the study of complex systems
[7]. It allows both the stochastic and temporal aspects of complex
systems to be addressed by developing simulation models, i.e. algo-
rithms or computation codes representing the behavior of a part of the
system in response to a defined scenario and putting them together.

Issue 4 - May 2012 - Simulation of Systems of Systems
 AL04-14 2

Various types of simulation exist and may be used to put a system “in
situation” and assess its behavior. However, this simulation approach
still sets issues. First, simulations generate large amounts of data that
need be exploited, which can be done by various means. Second,
since complex systems result from the interactions of various agents,
it would seem suitable for the models developed for the simulation of
an agent to be able to be reused: this capitalization concept is quite
important when studying families of systems (e.g. defense systems).
So is the linked question of simulation interoperability: a complex sys-
tem simulation may be built using the knowledge of various partners
and interoperability is the key for such cooperative constructions.
Hence, the architecture of the simulation is a very important point.

Simulation may be monolithic or distributed. Monolithic simulation,
where a single model is developed for the entire system, is easily
set up and allows studies on the parameters of the system, or easy
running of Monte-Carlo computations over a family of scenarios with
slight variations. Distributed simulation is a quite different paradigm,
where each individual component of a system is simulated on its own,
interactions between these components being modeled as message
exchanges between the individual simulators, these exchanges being
standardized, or at least complying with a set of common rules. This
type of simulation is also sometimes called a functional simulation,
because it focuses on the functions1	of	the	system.	An	advantage	of	
distributed simulation is that it allows heterogeneous systems to be
taken into account naturally, and facilitates the capitalization of mod-
els and the parallel work within a multi-disciplinary team. Moreover,
simulation may be set up with the assistance of various techniques,
such as the use of a simulation framework or a higher-level descrip-
tion language related to code generation. In addition, various possible
points of view may be considered for the use of simulations, depend-
ing on the type of study considered: constructive simulation (purely
numerical), hybrid simulation (involving hardware in the loop), inter-
active simulation (with human agents in the loop, mostly for human
factor studies or for training simulators).

This paper presents some ideas on how simulation may be used for
the study of complex systems. The first section details the various
benefits of this approach. In a second section, various tools sup-
porting this simulation approach are presented. In a third section, the
issue of simulation exploitation is dealt with. Finally, a fourth section
gives some hints regarding possible applications.

Benefits of simulation for the study of complex systems

Interaction and dynamic aspects of a complex system

As	has	already	been	pointed	out,	interaction	and	dynamic	aspects	are	
paramount in the study of complex systems, because of behaviors
emerging from these interactions. Hence, dynamic approaches, such
as temporal simulation, allow these to be evidenced.

In the aerospace industry, this approach by simulation is particularly
needed, one of the main reasons for this being that the considered
systems (air transport system, space missions, etc.) generally do not
allow real experimentation before a very advanced stage of develop-
ment. Indeed, this is a consequence of their being, most often, either

very critical or tremendously expensive, when not both. Functional
simulation is particularly suited in this case: the agents of the system
are identified, each of them is separately simulated with the desired
(or possible) degree of granularity and the simulation then focuses on
the interactions between those agents.

Capitalization and knowledge protection

Even though capitalization aspects appeared very early in the distrib-
uted simulation paradigm (concept of “reuse of federates” - federates
being a common name for the components of a distributed simula-
tion, which is often considered as a “federation of simulators”), this
idea of an “available model catalogue” is in fact just part of the knowl-
edge and know-how that is capitalized upon in using distributed simu-
lation techniques. Indeed, the interaction between models developed
by different multidisciplinary teams and their participation in a large
scale simulation require an efficient collaboration between the teams
designing the various capitalized models.

However, there are in general two possible difficulties in the process
leading to capitalization and model reuse, which may be either techni-
cal or related to knowledge protection.

Technical problems, typically linked to the fact that models developed
independently must be put together, may be solved by offering as-
sistance for model integration, either by using simplifying tools (SIM-
CORE,	Genesis,	GAMME	-	cf.	the	following	sections)	or	by	establish-
ing a close cooperation between integration engineers and modeling
engineers	(IESTA2 - cf. the following sections).

Knowledge protection issues can be dealt with, since distributed sim-
ulation	standards	(e.g.	HLA,	an	IEEE	standard	that	will	be	introduced	
in a later section) already offer a first level of knowledge protection,
since capitalization is done for interoperable “black boxes” and the
model remains totally under the responsibility of its initial designer,
even though the “black box” must be provided with a clear definition
of its possible use, since the link must be established between the
design and the use of the models.

This	granted,	feedback	from	various	projects	such	as	IESTA	shows	
that, as long as providing a model does not mean losing control over
its development, capitalization offers a very interesting framework for
the participating teams, since it offers an interesting situation of vali-
dation and verification of their model, which would not easily be found
otherwise.

Therefore, distributed simulation is a good paradigm, even offering
a way to concurrent societies to carry out common simulation, by
only sharing the necessary interface, protection being ensured by the
HLA	mechanisms.	Moreover,	 the	 increasing	complexity	of	systems	
of systems makes simulation more and more useful and distributed
simulation seems unavoidable to ensure a more operational coopera-
tion between teams, e.g. for defense.

Multidisciplinary and model-driven approach

Modeling and Simulation (M&S) technology [26] [27] is an innovative
approach for the design and conception of complex systems, which

 1 in the sense of functional analysis

 2 http://www.onera.fr/iesta-en/index.php

Issue 4 - May 2012 - Simulation of Systems of Systems
 AL04-14 3

appeared in 2000. This framework is aimed at verifying and validat-
ing any significant project in simulation as much as possible, before
any significant realization (either in terms of cost or criticality). In this
context, many simulations are carried out using distributed simulation
as a support to construct a multidisciplinary complex system, where
the consistency between disciplines is ensured by the integration of
the various models into a temporal simulation.

A	major	interest	of	the	distributed	paradigm	in	this	case	is	that	each	
specialist may have at hand the data needed to describe the evolu-
tion of their model and that, since the system is closed, its evolution
at time -1t has been taken into account in the acquired data. This
approach being valid for all disciplines involved, it is referred to as
cosimulation, as described by I. Nakhimovski [24].

Onera has been using these M&S techniques to assess and com-
pare aircraft approach procedures in the first application setting of the
IESTA	project.	This	setting	was	meant	to	assess	the	ecological	impact	
of such procedures in terms of noise and chemical pollution around
an airport. The multidisciplinary approach involved is illustrated on
figure 1.

Important feedback in this regard has been provided by the valida-
tion	of	the	IESTA	acoustic	chain,	with	measurements	from	the	Aviator	
campaign. Indeed, the results obtained by the simulation of the condi-
tions of the campaign proved the representativeness of the acoustic
model to be good. This validation also needed the other models in-
volved in the simulation, which permitted the flight to be replayed,
simulating the reactors.

Simulation frameworks for complex systems

From the problematic stated above, a crucial point emerges for the
simulation of systems of systems: time management. In a simulation
of a system of systems, it is indeed necessary to maintain (at the
system level) a global state divided into subsystems in interactions,
all of this depending on time with possibly very different paces. There-
fore, it is necessary to have a lean time management, allowing each
component to respect its own rhythm, while at the same time keeping
a global state as close as possible to the real state.

Distributed simulation does not only bring the benefits of its capac-
ity to make models from various fields of physics (flight mechanics,
engine, acoustics, chemical dispersion, etc...- cf. figure 1) interop-
erable. It also allows the time management issue to be addressed:
HLA	offers	a	lean	time	management	relying	on	various	mechanisms	
allowing a harmonious coexistence of various paces: each system
publishes information with a validity period, i.e. a certain time span
within which they will not be altered. This way, the system does not
need to be studied at the smallest pace of all its components, which
would be too demanding.

Moreover, another advantage of distributed simulation is its adapt-
ability with respect to models: it allows these to be integrated by en-
capsulation, which means that the simulation is fitted to the models,
rather than the models fitted to the simulation. This kind of simulation,
dealing with models close to those developed by researchers, allows
a much easier validation, even though the integration cost is of course
higher, since ad hoc encapsulation techniques must be applied for
each of the models.

Unfortunately, this approach by distributed simulation is not well dis-
seminated. The main reasons for this are probably the complexity of
the standard, which is not easily set up, the important development
efforts, and the strong link to support means (COTS) that is required
for the exploitation of the simulation [25].

Onera	has	been	investing	in	the	HLA	distributed	simulation	standard	
for many years and today has a broad range of proficiency and tools
for setting up such simulations easily (cf. the following sections).

Simulation exploitation

Considering the very large scale of industrial simulations (which in an
aerospace context typically may include a whole day of traffic around
an airport, the study of a satellite constellation over its lifetime of
15-20 years, etc.), the amount of data produced by any of these is
tremendous and may not be treated by a human operator; hence the
need for assistance analysis tools. This amount of data is actually

Figure	1	-	IESTA	Multidisciplinary	Example

Issue 4 - May 2012 - Simulation of Systems of Systems
 AL04-14 4

sometimes so huge that it may not even be saved for future treat-
ment and must be analyzed online, which is impossible without some
automated assistance.

This section presents one example of techniques that may be used
for this purpose: chronicles, a formalism focusing on the description
and recognition of behaviors. Chronicles rely upon the idea that the
events generated by the simulation contain enough information on
the behaviors occurring within the simulation to be directly exploited
by identifying behavior signatures within their time-ordered succes-
sion. These signatures are expressed by logical expressions called
chronicles.

Chronicles

For this purpose, a temporal approach is naturally particularly suited
and temporal logic is a very powerful tool for the analysis of the be-
havior of large systems of systems. It may be used in order to make
macroscopic assessments on the global behavior of a system, as in
[6] [21] [23], but this last approach is a global one, not particularly
suited for distributed simulation.

A	very	interesting	approach	focuses	on	following	a	simulation	for	the	
instantaneous, certain detection of behaviors throughout time, rather
than on the global assessment of the likeliness of a behavior, provid-
ing an expression power and the possibility of detecting behaviors
through the observation of their characteristic traces. This technique
is not only useful for the exploitation of simulation, but also poten-
tially for their development (cf. e.g. [10])The characteristic traces
are expressed through correlations of interactions (called events) in
the system and these correlations are represented using a formalism
called chronicles for their fine detection. This formalism was intro-
duced by Dousson et al [14] and developed by Carle and Ornato [8]
and Dousson et al [13] [15] [16].

In this approach, events cannot occur simultaneously and durations
are not associated with events, thus considered as instantaneous, but
time may indeed be taken into account using special events corre-
sponding	to	clock	ticks.	A	chronicle	describes	relationships	between	
the events of a sequence ordered with respect to time. The goal is
to identify all instances of the chronicle schema within an observed
event flow (where events are ordered).

Chronicle identification is achieved through the matching between
events of the flow and events in the chronicle description, while flow
events that do not contribute to the chronicle recognition are simply
ignored. In addition, it may be of interest to save the piece of infor-
mation stating which events in the flow contributed to the chronicle
recognition, because it may help to find the causes of the observed
events.	A	first	modeling	of	chronicle	recognition	and	its	application	to	
the analysis of distributed simulation was proposed in [1] [2] [3] [4]
and a reworked version of the previous work in [9] [22].

Simulation Tools

The previous section gave some flavor of the kind of techniques that
can be used for distributed simulation; here, some actual techniques
will	be	presented,	focusing	around	the	High	Level	Architecture	(HLA),	
which	 has	 been	 the	 NATO	 recommended	 standard	 for	 distributed	
simulation since as early as 19983	.	HLA	has	been	used	also	in	other	
non-military contexts, for instance, to design civilian air traffic simula-
tions.	This	section	first	describes	the	HLA	standard.	Then,	it	presents	
three Onera tools that were developed to assist distributed simulation
designers and make the development of such simulations go more
easily	and	smoothly:	the	first	one,	CERTI,	is	an	HLA	implementation;	
the second one Genesis, relies on a description language allowing to
automate and make consistent as much as possible from the devel-
opment process of a simulation; the third one, SimCore, consists in
a framework providing a generic model integration process. Finally,
another approach for the development of distributed simulation is pre-
sented, the originality of which is that it is data-centered and may be
used to generate models complying with various standards or tools,
including	HLA.

HLA

A	very	popular	 standard	 for	distributed	simulation	 is	 the	 IEEE	High	
Level	Architecture	[17]	(abbreviated	HLA).	 Its	principles	were	origi-
nally developed by the United States department of defense [12],
but quickly spread to industry and finally led to an IEEE standard, in
which the simulation consists in various components - called feder-
ates - which are linked in a federation, in which communications and
interactions take place [18], regardless of the characteristics of the
computing platform.

A	High	Level	Architecture	model	consists	of:
	 •	an	object	oriented	interface	specification,	describing	how	the		
 platform will interact with the communication manager soft
 ware: the Run-Time Infrastructure;
	 •	an	object	model	template	(OMT)	[19],	defining	how	information
 is shared between the various agents composing the federation;
	 •	a	set	of	rules	ensuring	compliance	with	the	HLA	standard.

Box 1 presents an example of a run-time infrastructure: Onera’s
CERTI.

The object model template is composed of documents describing the
federation at various levels. The Federation Object Model describes
the interactions and attributes of the entire federation. It is composed
of all of the Simulation Object Models, which describe the same
features for every single federate. Each Simulation Object Model is
unique and evolves together with one federate of the simulation, while
the Federation Object Model is common to the entire federation and
must be updated every time a new component, requiring new interac-
tions, is added to the federation.

3 “The	High	Level	Architecture	(HLA)	is	the	preferred	Simulation	Interoperability	Standard	recognized	by	NATO	as	early	as	1998”,	quoted	from	NATO	Model-
ling and Simulation Group (NMSG): http://www.rto.nato.int/panel.asp?panel=5

Issue 4 - May 2012 - Simulation of Systems of Systems
 AL04-14 5

Box 1 - CERTI

CERTI	is	an	HLA	RTI	developed	since	1996	by	Onera,	the	French	Aerospace	Lab.

The	initial	purpose	of	CERTI	was	to	develop	a	homemade	RTI	in	order	to:	learn	HLA	usage	and	HLA	RTI	internals	(e.g.	time	manage-
ment) and have total control over source code in order to use this particular RTI with specific modifications in several research projects
(security mechanism, multi-resolution, high performance distributed simulation, etc.).

CERTI became open source5 in 2002. Since then, the Open Source CERTI project has been mostly driven by research project needs and
funds.	CERTI	is	drawing	increasing	interest	from	the	HLA

CERTI has a classical communicating process architecture depicted in figure B1-01, making it very portable on various operating sys-
tems. CERTI currently works on various Unix platforms, including Linux and various Windows OS flavors. CERTI is natively written in
C++ but offers binding in Java and Python.

The	CERTI	messaging	 infrastructure	makes	 it	generic,	a	message-oriented	middleware.	Every	HLA	service	 is	 implemented	using	a	
predetermined	set	of	message	exchanges	between	Federates,	its	RTIA,	and	RTIG.
The RTI Gateway (RTIG) is a centralization point in the architecture. Its function has been to simplify the implementation of some
services. It manages the creation and destruction of federation executions and the publication/subscription of data. It plays a key role
in message broadcasting, which has been implemented by an emulated multicast approach. When a message is received from a given
RTIA,	the	RTIG	delivers	it	to	the	interested	RTIAs,	avoiding	a	true	broadcasting	[see:	CERTI	messaging	architecture]	

A	specific	role	of	the	RTIA	is	to	immediately	fulfill	some	federate	requests,	while	other	requests	require	messages	with	the	RTIG.	The	
RTIA	manages	memory	allocation	for	the	message	FIFOs	and	always	listens	to	both	the	federate	and	the	RTIG.	It	is	never	blocked,	be-
cause	the	required	computation	time	is	reduced.	It	also	plays	a	great	role	in	the	implementation	of	the	Time	Management	HLA	Service.

HLA	is	a	DoD	defined	simulation	standard,	which	is	now	the	IEEE-1516	standard.	It	is	publish/subscribe	oriented	middleware	that	could	
be	compared	with	OMG	DDS.	However,	HLA	has	a	unique	feature,	which	is	Time	Management	service.	The	Time	Management	service	
makes	it	possible	for	each	simulation	stakeholder	(called	a	Federate	in	HLA	wording)	to	ensure	that	all	of	the	data	or	events	that	 it	
receives	or	sends	are	causally	ordered.	CERTI	makes	no	exception	to	this	and	implements	the	HLA	time	management	service	using	the	
well-known Chandy-Misra-Bryant NULL message conservative algorithm. CERTI even has a unique feature, which is a modification of
this protocol to greatly enhance the protocol performance in some event-driven situation: this is the NULL message PRIME conservative
algorithm.

More	than	a	simple	HLA	compliant	RTI	implementation,	CERTI	is	an	ever	growing	Open	Source	community	that	contributes	original	
software	within	or	around	CERTI	as	depicted	in	figure	B1-02.	CERTI	is	currently	evolving	towards	the	HLA	1516	standard	[17].

5 components of the CERTI

Figure B1-01 - CERTI messaging architecture

Matlab/HLA
Toolbox

S. Pawletta
C. Stencel

HLA TestSuite
CERTI WorldWilde Team

F90/HLA I/F
Toolbox

C. Stencel

HLA Tutorial

C. Stencel

XPlane/HLA
Plugin

JM. Mathe
FlightGear/

HLA
Pludin

Python/HLA
Binding

P. Gotthard

CERTI
Onera/DTIM

libHLA
P. Gotthard

Figure B1-02 - Components of the CERTI

Issue 4 - May 2012 - Simulation of Systems of Systems
 AL04-14 6

Genesis

HLA	is	a	very	powerful	technology,	but	may	be	rather	heavy,	espe-
cially because of some redundancies in its development process. To
simplify this part of the work, a tool, Genesis [5], has been developed
by Onera to simplify most of these redundant parts and is helpful both
to the developers and the specifiers. Genesis consists in a language,
in	which	a	high-level	description	of	an	HLA	simulation	component	or	
a	whole	HLA	federated	simulation	may	be	specified,	and	an	engine,	
processing such specifications in order to generate the source code
for the components, along with the documentation required by the
standard and the configuration files, ensuring that they will be able to
interact properly with each other in the federation. Figure 2 displays
the principles of Genesis.

Figure 2 - Principles of Genesis

Its main purpose is helping the developer in all automatable phases
of	the	writing	of	an	HLA	component,	i.e.	the	consistency	between	the	
object model and the federate software and the handling of existing
federates, object models and federations, and this during the whole
development process, from the description until the production of
fully functional federates, without additional work. Besides, Genesis
is also an engineering tool, allowing the generation of project-related
files, in order to facilitate the development process and offering devel-
opers a support and dedicated tools from the design and specification
process to the testing process.

Simulation Framework Approach

The need for a framework

Since system of systems simulations involve more complex opera-
tional scenarios, simulation engineers face very challenging require-
ments, so as not to lag behind.

GENESIS Tool
Lexical &
Syntactic
analyser

Collected Data

Code &
documentation

generation

Documentation

HTML

FOM/SOM

Configuration
Files

.fed, .xml, omt

C++sources
Datatypes
Objects,

Interactions
Federates

RTI Virtual
RTI Lib

User’s Lib
Physical
models

Makefiles

Types
objects LibGenesis

Lib

GenDL
Datatypes

GenDL
Federates
Federation

GenDL
Objects

Interactions

Federates

Produces

Compiles

Reads

Produces Produces

To cope with these increasing expectations, a global approach needs
to	be	undertaken	 to	 find	 the	most	generic	solution.	A	 “framework”	
provides an extensible and flexible structure, to ease both the develop-
ment and the exploitation of new applications. It covers a large spec-
trum of system of systems applications; it also supports engineers
across the entire simulation process: developing new simulations,
preparing complex scenarios on a map, executing and controlling
their simulation, using 3D visualization and processing the results.

The framework composition and services

A	 framework	 is	made	of	a	set	of	coherent	components,	which	are	
listed hereunder:
	 •	a	simulation	engine
The framework relies on a simulation engine that serves as a core
for model integration and tool development. Its applications may
concern both civilian and military domains. Within this engine, our
simulation entities (aircrafts, ground vehicles, etc.) are considered as
actors.		Actors	exhibit	attributes,	which	have	a	type,	a	value	and	sys-
tematic getter/setter functions. They communicate within a simulation
through	messages.	A	manager	directs	the	actors	and	is	responsible	
for the entire simulation process (including time management and
scenario	loading).	A	set	of	common	core	services	is	also	available	for	
models: it concerns mathematic functions, input/output handling and
geographic services (numeric terrain model, atmosphere and ephem-
eris model, etc.).
	 •a	library	of	capitalized	models	and	actors
The engine comes with a standard library of capitalized actors and
models. For defense applications, this library (provided by MEFISTO)
involves models for sensors, weapons, platform mobility, artificial in-
telligence, tactical data links, battle damage and decision processes.
All	 platform	 actors	 publish	 kinematic	 attributes	 in	 a	 standard	way,	
know how to take damage from different kinds of weapons, under-
stand damage states, can perform dead reckoning for both local and
remote vehicles, and have the infra-red and radar cross-section at-
tributes useful for sensor models
	 •	a	set	of	exploitation	tools	
Scenario preparation: in this phase, the different actors of the simula-
tion (platforms, sensors, weapons) are defined, together with their
technological parameters, their force affiliation and their initial behav-
ior. The GIS capabilities of the tool help us to precisely locate the
actors	in	the	world.	At	the	end,	the	scenario	is	saved	in	XML	format.	
The scenario editor relies on the generic concepts of the underlying
engine; nevertheless it is possible to customize it for a particular ap-
plication, thanks to a plug-in architecture.
Simulation execution and control: the execution mode depends on the
user context. It is both agile and scalable. It is agile because we can
choose between three modes: a batch mode with no GUI (for devel-
opment and automatic tests), an execution mode from a stand-alone
tool called Scenario Manager (for fast simulations and visual check-
ing)	and	a	full	deployment	mode	on	a	HLA	federation	(for	demonstra-
tion purposes, performance optimization and interoperability). It is
scalable	because,	in	HLA	mode,	each	federate	can	be	parameterized	
with a list of actors to physically simulate. The simulation can also be
visualized in three dimensions thanks to a Stealth Viewer.
Result processing: The framework provides result processing and
analysis tools: chart visualization of simulation results, easy trajec-
tory replay from Scenario Manager, and federation execution replay
from the Stealth Viewer.

Issue 4 - May 2012 - Simulation of Systems of Systems
 AL04-14 7

The framework status and perspectives

The current version of the framework was developed by an in-house
research	project	called	AMAO	[11].	The	purpose	of	this	project	was	to	
study	the	role	and	the	concepts	of	Unmanned	Aerial	Vehicles	(UAVs)	
in future offensive missions. The resulting experimentations can use
both constructive and virtual simulations to assess various issues,
such as the role of the different actors in the decision making process,
the overall mission timing and coordination process, the efficiency of
subsystems (sensors, weapons) and algorithms (image processing
and data fusion) and the robustness of the proposed system con-
cepts.

The current MEFISTO research project is aimed at extending the
framework with new models to perform new applications. Since the
framework turned out to be an agile and generic backbone, we would
like to keep on capitalizing models for new scenarios, filling the needs
of future Onera projects.

GAMME & SIMSKY

When designing distributed simulation systems, data management
is a particularly crucial issue. Data management is about storage,
access, distribution and representation of entities that are shared by
different simulators. The approach presented here puts data manage-
ment at the core of the simulation development process.

We distinguish between two kinds of data: persistent and non-persis-
tent (transient). We could also say static and dynamic data. Persistent
data is used to initialize the simulation. It may be stored in a relational
database	or	some	files,	like	XML	files.	Access	to	it	can	be	obtained	
by querying the database or reading the files. Transient data is about
dynamic data evolving during the simulation. For example, an airplane
will be initialized with static data (number of passengers, initial mass,
etc.) and its dynamic behavior will be described by a state vector
(position, speed, current mass, etc.). Dynamic data is not stored, but
distributed between the different components of a simulation, e.g. an
aircraft	 simulator	will	 publish	 state	 vectors,	whereas	 an	 ATC	 radar	
simulator will subscribe to them to display radar tracks.

All	of	this	data	may	have	different	representations,	especially	in	het-
erogeneous simulations where simulators are developed in different
languages.	An	entity	may	be	 represented	by	some	 tables	 in	a	 rela-
tional database, classes in object-oriented programming languages,
some textual or binary file formats, etc. Consistency must be ensured
between these different representations, but maintaining them may
become very repetitive, painful and error-prone.

This	 is	why	Onera	has	developed	GAMME,	a	 tool	aimed	at	deriving	
many different representations starting from a single “unified” data
model. It consists of a conceptual data editor and transformation
mechanisms.	GAMME	relies	on	the	Model-Driven	Engineering	(MDE)	
methodology. The users define domain-specific data models, that
is, abstract representations of the knowledge shared by the differ-
ent components of a simulation, and apply transformations on them.
Transformations	 result	 in	 pieces	 of	 code,	 database	 schemes,	 XML	
schemas, etc., which are then used by simulator developers to ac-
cess or distribute data. Thus, developers can concentrate on their
domain-specific code (physics or mathematics) and not on IT-related

code, for instance, focus on how an aircraft flies and not on how
aircraft data is stored or shared with other simulators. This approach
is meant to offer a common design, independent from the target rep-
resentations, and to increase productivity by reusing transformations
and generating huge and errorless code.

The	first	application	of	GAMME	to	distributed	simulation	is	the	Sim-
Sky project.

SimSky	 is	 the	second	version	of	 the	 IESTA	platform.	 It	 is	aimed	at	
assessing	 innovating	 concepts	 in	 the	ATM	system	of	 systems:	 for	
example, Onera is currently involved in projects studying fully au-
tomated air transport systems, the impact of introducing drones in
general aviation airspace, a concept of personal air transport, etc.
Such studies are based on refining concepts increasingly through
validation steps which rely on iterative simulation.

In this perspective, Onera needs a tool for rapid and iterative prototyp-
ing	of	ATM	concepts.	Many	distributed	simulation	platforms	already	
exist, however they do not fulfill all SimSky requirements, for instance
because of lack of flexibility, complex programming interfaces, pro-
prietary code, limited number of programming languages, etc. Con-
versely, SimSky aims at proposing a number of facilities:
	 •	a	domain-specific	data	modeling	thanks	to	a	user-friendly	GUI,	
promoting iterative prototyping of concepts,
	 •	 the	 rapid	 interconnection	 of	 multi-disciplinary	 models	 (e.g.	
flight mechanics, conflict detection and resolution, strategic planning,
etc.)	through	distributed	simulation	and	simple	APIs,
	 •	an	open	infrastructure,	available	on	several	operating	systems	
and programming languages dedicated to various needs and pro-
grammer skills: scientific computation (like Matlab/Fortran), algorith-
mic	(CAML),	performance	(C/C++),	GUI	(Java),	rapid	development	
(Python), etc.,
	 •	tools	for	the	supervision	and	monitoring	of	simulations,	like	air	
traffic visualization,
	 •	a	set	of	default	simulation	models	(air	traffic	simulation,	weather	
model)	allowing	algorithms	to	be	quickly	tested	in	an	ATM	simulated	
environment,
	 •	fast-time	and	real-time	/	manned	and	unmanned	simulation	ca-
pabilities.

All	 of	 the	 IT-related	 code	 is	 automatically	 generated	with	 GAMME:	
database access, file management, data distribution over the network
through middleware, such as the rapid prototyping-oriented Ivy4, or
the	reliable	and	interoperable	HLA.

We now present some actual and representative applications of dis-
tributed simulation in which Onera is involved: the first is set up in
civilian air traffic context, whereas the second deals with a framework
for the testing of defense concepts.

Applications

ASTRAL & 4DCoGC

One	of	the	first	applications	using	SimSky	will	be	ASTRAL.	This	re-
search project is aimed at deeply studying the concepts introduced in
the European Project 4DCoGC.

4 http://www.tls.cena.fr/products/ivy/

Issue 4 - May 2012 - Simulation of Systems of Systems
 AL04-14 8

These	projects	study	a	revolutionary	post-SESAR	concept	for	a	future	
ATS	(Air	Transportation	System)	by	adding	as	much	onboard	auton-
omy to the aircraft as necessary to fulfill the overall requirements of
improved efficiency and safety of air transportation.

The	 system	 of	 systems	 studied	 by	 both	 ASTRAL	 and	 4DCo-GC	 is	
composed	of	Airline	Operation	Centers,	a	centralized	ground-based	
ATSM	(Air	Transport	System	Manager),	aircraft,	data-link	communi-
cation	systems,	etc.	The	ATSM	and	aircraft	are	themselves	systems,	
some parts of which can be individually simulated (for example, FMS,
auto-throttle & auto-pilot, local aircraft re-planning system). Such a
system is illustrated in figure 3.

Figure	3	-	An	ATM	system	of	systems

The central idea of “4D-contract” is that each aircraft must be at the
right place at the right time and implies that the aircraft is fully respon-
sible for following the 4D-contract that has been assigned to it by the
ATSM.	If	the	aircraft	finds	that	it	cannot	comply	with	the	contract	(due	
to unpredictable weather conditions or unexpected events, such as a
runway closure), then it re-negotiates a new contract with the system.
Margins around the expected positions are represented by “freedom
bubbles”, where the aircraft can move without having to re-negotiate
and “security bubbles” to ensure aircraft separation.

The	main	objectives	of	ASTRAL	are	 to	define	and	 implement	mod-
els and algorithms for 4D planning and 4D-contracts guidance and
monitoring, put the concept under stress via iterative simulations,
then present results about the concept’s robustness towards the input
parameters of planning algorithms (take-off weight, weather, etc.) and
finally draw lessons from this to make recommendations on freedom
and security bubbles.

MEFISTO

The MEFISTO research project objective is to provide a battlelab
for	 the	French	Aerospace	Lab.	This	battlelab	 relies	on	a	simulation	
framework filled with a library of capitalized Onera models. It focuses
heavily	on	interoperability,	and	will	be	connected	to	the	French	Army	
laboratory	for	technical	and	operational	simulation	(DGA	LTO)	through	
a	 dedicated	 collaboration	 network	 (EXAC	 and	 the	 ITCS	 gateway).	
Thus, it will authorize collaborative simulations and experimentations
with	DGA	and	the	other	connected	battlelabs	(e.g.	of	major	industry	
groups	like	EADS,	Thales,	MBDA,	etc.).

The main achievements of MEFISTO are:
	 •	the	development	of	two	applications	:	
	 -	PANTHERE	dealing	with	the	study	of	missile	penetration	in		
 air defense assets,
	 -	SITAC	dealing	with	tactical	situation	awareness	on	the	
 battle field;
	 •	an	 interoperability	experimentation	with	 the	DGA:	an	 indepen-
dent unmanned air vehicle strike mission will be simulated, part of the
models	being	carried	out	by	the	DGA	LTO	in	Arcueil	and	the	other	part	
by the Onera in Palaiseau.

Conclusion

Simulation is a very important approach for the study of complex
systems. Especially in the case of aerospace systems, which can-
not be directly tested because of their cost or criticality, simulation
is a perennial, indispensable activity for designing and testing new
concepts.
As	this	paper	shows,	simulation	of	complex	systems	goes	far	beyond	
the simple virtual restitution of a complex system. It takes into ac-
count multidisciplinary aspects and also secondary purposes such
as capitalization, knowledge protection, easy prototyping, and mutu-
alization, which do not only allow simulations to be set up, but also
go beyond the study of the systems to focus on their interactions and
allow the consequences of the use of system concepts to be tested.
Onera has a broad panel of tools for the simulation of complex system
and the exploitation of the data produced by such simulations, thus
positioning itself for the study of future techniques or system designs.
These simulation techniques are a new and innovative means to de-
sign, test and even validate complex system concepts. It also offers
access to a larger audience to the possible consequences of such
new concepts, since they allow the system to be viewed in its envi-
ronment and also provide a way to show these results to the research
teams involved in the development of a simulation.
As	for	exploitation	techniques,	which	are	paramount	in	the	simulation	
approach, they constitute a very active field of study, as has being
outlined in this paper. Some interesting perspectives to this extent can
be	seen	in	the	use	of	description	languages	(e.g.	the	NAF	—	NATO	
Architecture	Framework)	 in	order	 to	specify	 the	complex	system	 in	
such a way that the difficult points to be particularly considered in the
simulation will be outlined

Issue 4 - May 2012 - Simulation of Systems of Systems
 AL04-14 9

Acknowledgements

The authors would like to thank several people who were a great help on the various topics covered by this paper, especially by providing useful insights on
various	tools	or	applications:	A.	Elie	for	the	SimSky	project,	A.	Joulia	for	the	4DCoGC	project,	P.	Siron	and	M.	Adelantado	for	the	CERTI.	The	authors	would	also	
like to express special gratitude to Dr. H. Piet-Lahanier for her careful reviewing and comments on this paper.

References

[1]	O.	BERTRAND,	P.	CARLE,	C.	CHOPPY	- Chronicle modelling using automata and coloured. Petri nets, Proc. of the 18th International Workshop on Prin-
ciples of Diagnosis, 2007
[2]	O.	BERTRAND,	P.	CARLE,	C.	CHOPPY	-	Vers une exploitation des simulations distribuées par les chroniques. Proc. of the 8ième Rencontres nationales des
Jeunes	Chercheurs	en	Intelligence	Artificielle,	2007
[3]	O.	BERTRAND,	P.	CARLE,	C.	CHOPPY	-	Towards a Coloured. Petri nets semantics of a chronicle language for distributed simulation processing. Proc. of
the	CHINA	(Concurrency	metHods:	Issues	aNd	Applications)	workshop,	2008
[4]O.	BERTRAND,	P.	CARLE,	C.	CHOPPY	-	Coloured Petri Nets for Chronicle Recognition. Proc. of the 14th Int. Conf. on Reliable Software Technologies, 2009
[5]	J.	BOURRELY,	P.	CARLE,	M.	BARAT,	&	F.	LÉVY	-	Genesis: an Integrated Platform for Designing and Developing HLA applications. Proc. of Simulation
Interoperability Workshop, 2005
[6]	J.	BOURRELY,	R.	KERVARC,	C.	QUILLIEN	-	Performance Evaluation for Complex System. F. Pistella, R. M. Spitaleri (eds.), Proceedings of the 7th	IMACS/
ISGG	Meeting	on	Applied	Scientific	Computing	and	Tools	(MASCOT07),	IMACS	Series	in	Computational	and	Applied	Mathematics,	2007
[7]	P.	CANTOT	AND	D.	LUZEAUX	-	Simulation et modélisation des systèmes de systèmes. Hermès, 2009
[8]	P.	CARLE,	P.	BENHAMOU,	F.-X.	DOLBEAU,	M.	ORNATO,	La	reconnaissance	d’intentions	comme	dynamique	des	organisations,	in:	Proc.	of	the	6iemes Jour-
nées	Francophones	pour	l’Intelligence	Artificielle	Distribuée	et	les	Systèmes	Multi-Agents,	1998
[9]	P.	CARLE,	C.	CHOPPY,	R.	KERVARC	-	Behaviour Recognition Using Chronicles.		Z.	Duang,	L.	Ong	(eds.),	Proceedings	of	the	5th IEEE International Confe-
rence	on	Theoretical	Aspects	of	Software	Engineering,	p.	100	-	107,	IEEE	Computer	Society	Press,	2011
[10]	P.	CARLE,	C.	CHOPPY,	R.	KERVARC	-	Detecting Behaviours Within HLA Distributed Simulations with Added Analysis Components. Proceedings of IEEE
Aerospace	Conference,	2012
[11] R. CUISINIER, M. BRUNEL, S. PRUDHOMME - Using Open Source to Build Comprehensive Battlespace Simulations. Proc. of SimTecT, 2010
[12]	J.	S.	DAHMANN	- The High Level Architecture and Beyond: Technology Challenges. Proceedings of the Thirteenth Workshop on Parallel and Distributed
Simulation, p. 64–70, 1999
[13] C. DOUSSON - Extending and Unifying Chronicle Representation with Event Counters. Proc. of the 15th	European	Conference	on	Artificial	Intelligence,	
2002
[14]	C.	DOUSSON,	P.	GABORIT,	M.	GHALLAB	-	Situation Recognition: Representation and Algorithms.	Proc.	of	the	International	Joint	Conference	on	Artificial	
Intelligence, 1993
[15]	C.	DOUSSON,	P.	LE	MAIGAT	-	Improvement of Chronicle-Based Monitoring Using Temporal Focalisation and Hierarchisation. Proc. of the International
Workshop on Principles of Diagnosis, 2006
[16]	C.	DOUSSON,	P.	LE	MAIGAT	- Improvement of Chronicle-Based Monitoring Using Temporal Focalisation and Hierarchisation. Proc. of the International
Joint	Conference	on	Artificial	Intelligence,	2007
[17] IEEE 1516-2010, Standard for Modeling and Simulation High Level Architecture - framework and rules
[18] IEEE 1516.1-2010, Standard for Modeling and Simulation High Level Architecture - federate interface specification
[19] IEEE 1516.2-2010, Standard for Modeling and Simulation High Level Architecture - object model template (OMT) specification
[20]	M.	JAMSHIDI	(editor	-		Systems	of	Systems	Engineering:	Principles	and	Applications	(chapter	5),	CRC	Press,	2009
[21]	R.	KERVARC,	K.	BOURRELY,	C.	QUILLIEN	-	A generic Logical-Temporal Performance Analysis Method for Complex Systems. Mathematics and Compu-
ters in simulation 81: 717–730, 2010
[22]R.	KERVARC,	C.	CHOPPY,	P.	CARLE	-	Chronicles: a Temporal Logic Framework for the Study of Large Simulations.	R.	M.	Spitaleri,	A.	Plaza,	F.	Pistella	
(eds.), Proceedings of the 10th	IMACS/ISGG	Meeting	on	Applied	Scientific	Computing	and	Tools	(MASCOT10),	IMACS	Series	in	Computational	and	Applied	
Mathematics, 2010
[23]	R.	KERVARC,	C.	LOUYOT,	S.	MERIT,	S.	BERTRAND,	J.	BOURRELY	-	Performance Evaluation Based on Temporal Logic. F. Pistella, R. M. Spitaleri (eds.),
Proceedings of the 9th	IMACS/ISGG	Meeting	on	Applied	Scientific	Computing	and	Tools	(MASCOT09),	IMACS	Series	in	Computational	and	Applied	Mathema-
tics, 2009
[24]	I.	NAKHIMOVSKI	-	Contributions to the Modeling and Simulation of Mechanical Systems with Detailed Contact Analyses. Ph.D. thesis, Department of
Computer and Information Science, Linköpings University, 2006
[25]	M.	S.	SHEPHARD,	M.	W.	BEALL,	R.	M.	O’BARA,	B.	E.	WEBSTER	-	Toward Simulation-Based Design.	Finite	Elements	in	Analysis	and	Design	40(12):	
1575–1598, 2004
[26]	R.	SINHA,	V.	LIANG,	C.J.J.	PAREDIS,	P.K.	KHOSLA	-	Modeling and Simulation Method for Design of Engineering Systems. Journal of Computing and
Information Science in Engineering 1(1): 84- 91,2001
[27]	H.	ZHANG,	H.	WANG,	D.	CHEN,	G.	ZACHAREWICZ	-	A Model-Driven Approach to Multidisciplinary Collaborative Simulation for Virtual Product Develop-
ment.	Advanced	Engineering	Informatics	24:	167–179,	2010

Acronyms

4DCoGC (4-Dimensional Contract Guidance and Control of the aircraft)
AMAO	(Autonomie	des	Missions	Aéroportées	Offensives	-	Onera	federative	
project on the autonomy of offensive air missions)
ASTRAL	(Automatisation	des	Systèmes	de	TRansport	Aérien	à	Long	terme	-	
long-term air transport system automation)
ATC	(Air	Traffic	Control)

ATM	(Air	Traffic	Management)
ATS	(Air	Transport	System)
ATSM	(Air	Transport	System	Manager)
CERTI (Onera’s RTI)
DGA	(Délégation	Générale	pour	l’Armement	-	Division	of	the	French	Defense	
Ministry)
EXAC	(EXpérimentation	pour	l’Acquision	de	Capacité	-	DGA	secure	network	
for experiments)

Issue 4 - May 2012 - Simulation of Systems of Systems
 AL04-14 10

AUTHORS

Patrice Carle graduated from the Université Paris VI, where he
obtained a Ph.D. in mathematics and artificial intelligence in
1992. Since then, he has been a full-time researcher at Onera,
first at the Department for Modeling and Information Process-
ing, then at the Department for System Design and Perfor-
mance Evaluation. He is currently head of the TCS (“system

design and simulation techniques”) research unit. His research interests
focus on distributed simulation, domain specific languages and code genera-
tion.

Romain Kervarc	graduated	from	the	École	Normale	Supérieure	
de Lyon and obtained a Ph.D. in formal logic in 2007. Since
then, he has been a full-time researcher at Onera, where he is
also a member of the scientific council of the branch for Infor-
mation Processing and Systems. His research interests include
formal methods, logic, modeling and evaluation of complex

systems. He is also a member of the Supervisory Board of the European
Union	Initial	Training	Network	“From	Mathematical	Logic	to	Applications”.

Raphael Cuisinier	 graduated	 as	 an	 engineer	 from	 the	 École	
Polytechnique in 1999, after which he obtained his Engineering
Diploma	 from	Sup’Aéro	 in	2011.	After	 five	years	at	 the	DGA	
(Directorate	for	Armament	of	the	French	Ministry	of	Defense),	
he joined Onera in 2006, where he is currently head of the S2IM
(“simulation, infrastructure, model integration”) research unit

and responsible for Onera project MEFISTO, aimed at developing an Onera
Battlelab.

Nicolas Huynh graduated from the French national college
of	aeronautics	and	aerospace	(Sup’Aéro)	 in	1989,	and	holds	
two MSc in aerospace engineering and computer science. He
worked	 for	 fourteen	 years	 at	 the	 French	 Air	 Navigation	 Ser-
vice	Provider	on	many	Air	Traffic	Management	(ATM)	simula-
tion projects and, since 2007, has been a research engineer at

Onera, where he has been in charge of simulation infrastructure and integra-
tion activities in several projects and now leads project SimSky, aimed at
rapid	prototyping	of	ATM	concepts.

FOM (Federation Object Model)
GAMME	(Génération	Automatique	pour	la	Métamodélisation	Métier	Enrichie	
- Onera project on metamodelling and data-centered techniques for code
generation)
GENESIS	(Onera’s	assistance	tool	for	the	generation	of	HLA-compliant	simu-
lations)
GIS (Geographic Information System)
GIS (Graphical User Interface)
HLA	(High-Level	Architecture)
IEEE (Institute of Electrical and Electronics Engineers)
IESTA	(Infrastructure	d’Évaluation	des	Systèmes	de	Transport	Aérien	-	Onera	
infrastructure for the evaluation of air transport systems)
ITCS	 (Infrastructure	 Technique	 Commune	 dédiée	 à	 la	 Simulation	 pour	
l’acquisition	-	Technical	M&S	infrastructure	for	supporting	SBA	process)
LTO (Laboratoire Technico-Opérationnel - technical and operational labora-
tory)

Judicaël Bedouët	 is	 an	 engineer	 from	 the	 École	 Nationale	
d’Aviation	 Civile	 and	 holds	 a	 M.Sc.	 in	 security	 of	 software	
jointly from Université de Toulouse II/III, Institut National Poly-
technique	de	Toulouse	and	Institut	Supérieur	de	l’Aéronautique	
et de l’Espace. He entered Onera in 2008 as a research engi-
neer at DCPS. His research interests include distributed simu-

lation applied to air transport systems, data-driven approaches for simula-
tion, automated generation of code and software quality.

Thomas Rivière is an Onera research scientist with ten years
of research experience in computer science applied to air traf-
fic management problem solving. He is currently focusing on
the environmental evaluation of air traffic. He is also an expert
in research activities for air traffic management and computer
science for the European Commission Community Research

and Development Information Service.

Éric Noulard graduated from a French Higher Education Insti-
tution for Engineers in Computer Science (ENSEEIHT) in 1995
and received his PhD in computer science from Versailles
University	 in	 2000.	 After	 7	 years	 working	 in	 the	 Aerospace	
and Telecom domain for BT C&SI, mostly building high per-
formance tests and validation systems, he joined the Onera

research center in Toulouse as a research scientist. He works on distributed
and/or embedded real-time systems and is actively involved in the develop-
ment of the CERTI Open Source project.

M&S (Modeling & Simulation)
MEFISTO	(Moyens	d’Études	Fédérés	et	Interopérables	pour	la	Simulation	
Technico-Opérationnelle - Onera federative project for the study of technical
and operational simulation)
NATO	(North	Atlantic	Treaty	Alliance)
OMT (Object Model Template)
RTI (Run-Time Infrastructure)
RTIA	(Run-Time	Infrastructure	Ambassador)
RTIG (Run-Time Infrastructure Gateway)
SBA	(Simulation-Based	Acquisition)
SESAR	(Single	European	Sky	ATM	Research)
SimCore (Simulation Core)
SimSky (Onera’s fast-prototyping simulation architecture)
SOM (Simulator Object Model)
XML	(EXtended	Markup	Language)

