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On-board space systems are exposed to harsh environmental conditions including 
radiations, extreme temperatures and high-vacuum… Each component of this 

space environment, either separately or in synergy, induces short or long term 
degradation of electronics or materials, thereby impacting reliability. The wide diversity 
of observed disruptions, potential anomalies (and therefore of their underlying 
physical-chemical mechanisms) and the large set of technologies involved require 
the development of modeling tools to support experimentation, in order to achieve a 
representative simulation of device response and a reliable prediction of the life, as well 
as to limit ground testing.

Introduction

On-board space systems are exposed to a harsh environment composed 
of highly diversified components. At the electronics and materials level, 
radiations (Figure 1), temperature, vacuum and other conditions, locally 
induced specific conditions such as contamination, and charging 

conditions affect the overall performance of sub-systems. They 
separately cause short term functional disruptions in electronic circuits 
or a more gradual degradation of materials and, moreover, their synergy 
adds to the criticality of this problem with increased loss of performance.
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Figure 1 – Space environment components and associated effects on space systems
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Consequently, the complexity and wide diversity of the mechanisms 
at play in observed anomalies and degradations render the study of 
these phenomena difficult and, moreover, the available ground ca-
pabilities for the simulation of these mechanisms are limited and in-
complete.

In this game, coupling modeling and experimentation is often manda-
tory to obtain a realistic and representative description of the device 
response. The reliability challenges are manifold: event mechanisms 
or large shift of electrical parameters due to the ionizing dose may 
lead to functional failure of circuits embedded in critical sub-systems 
(attitude and orbit control, scientific data acquisition, etc.), and per-
formance loss in thermal control or solar array sub-systems leads to 
a shortened mission duration.

The physics behind a failure in a circuit or the degradation of passive 
material is different and therefore the methods for their evaluation and 
qualification are also. Norms and standards exist with a very generic 
approach for electronics and more specific to the application for ma-
terials. In any cases, testing is complex and costly because many 
experimental parameters affect the representativeness and thus the 
validity of the measured data (Table 1).

The wide range of technologies (materials and electronics) systems, 
and processes involved in any single one of these categories adds to 
the difficulties in carrying out experimental activities: this wide diver-
sity is also encountered in the observed responses under radiation 
exposure.

In electronics, lot-to-lot down to part-to-part variation is observed in 
the total ionizing dose response. The measurement of the single event 
sensitivity of digital devices entails technological variability that affects 
the event occurrence threshold (the minimum charge needed to induce 
event is actually measured as a distribution). Then, depending on the 

circuit function, the mode of failure may be critical or not (a transient 
signal can be interpreted as a valid signal, or filtered in the circuit).

Therefore, the ground evaluation of a device for its specific applica-
tion requires very complex experimental investigation and cannot be 
deduced from a generic approach. In such a context, numerical tools 
are very helpful for identifying anomalies or degradation mechanisms 
and thus 1)  support the definition and optimization of a test plan, 
2)  develop adequate prediction codes or extrapolate test results to 
complete an available data set, thereby limiting the number of quali-
fication tests.

In the following, several study cases are described to illustrate how 
modeling and experimentation can combine successfully to investi-
gate radiation effects in electronics, providing advances and discuss-
ing the benefits that can be reaped by ensuring the reliability of space 
systems.

Single Event Modeling with MUSCA SEP3

SEE (Single Event Effect) modeling is complex because many physi-
cal mechanisms intervene between the incoming particle and SEE 
phenomena, each playing an important role in the event occurrence. 
The ionizing particles of the environment (composed of protons and 
heavy ions for the space environment and of neutrons, protons and 
muons for the atmospheric environment) pass through the vehicle 
structure, shielding and circuit package all the way through to the 
sensitive structure. Then, primary or secondary ions induced by nu-
clear reactions generate electron-hole pairs along their paths in the 
semiconductor, which progress into the media according to transport 
mechanisms and are collected at the electrodes of the device. Finally, 
transient currents (SET, Single Event Transient) disturb the circuit op-
erations and lead to the occurrence of SEE.

Experimental parameters critical for the ground simulation of radiation effects

Single event 
(functional anomaly)

Degradation of electrical perform
Degradation of thermo-optical 

performance of surface coatings 
(ageing of polymer)Shift of electronical parameters 

(ionizing dose)
Background noise in opto-

electronics (non-ionising dose)

>  �Particle species & energy 
(deposited local charge 
density)

>  �Particle flux & fluence 
(anomaly statistics, testbench 
detection capability)

>  �Bias Conditions 
(collected charge quantity)

>  �temperature 
(internal gain and parasitic 
signal amplification)

>  �Topology 
(circuit reponse to parasitic 
signal, functional anomaly 
criteria for occurence)

>  �Particle species & energy 
(deposited local charge 
density)

>  �Dose rate 
(charge generation charge)

>  �Bias Conditions 
(electric field, charge 
transport)

>  �Temperature 
(charge transport and 
annealing)

>  �Oxide quality 
(charges mobility and trapping 
rate)

>  �Particle species & energy 
(species, size and distribution 
of defects)

>  �Bias Conditions 
(charge carriers assist in the 
rearrangement of defects)

>  �Temperature 
(re-arrangement/annealing of 
defects) 

>  �Topology 
(edge effect, dark current 
distribution, etc.)

>  �Particle species & energy 
(dose profile, degradation 
mode)

>  �Dose rate 
(free radicals generation 
charge)

>  �Test methods 
(combined/sequential 
exposure, sequence and 
timing)

>  �Temperature 
(scission/xlinking ratio of 
molecular chains, annealing) 

>  �Vacuum 
(annealing of free radicals, 
absence of oxidation)

Table 1 – Critical experimental parameters in 4 typical cases. In italics, some technological parameters (device-dependent) directly affecting circuit response
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The SEE phenomenon is probabilistic, i.e., it is possible to associate a 
threshold and probability parameters to describe the phenomena (the 
sensitivity or cross-section is determined by the ratio of the events 
count to the received particle flow).

The MUlti-SCAles Single Event Phenomena Predictive Platform 
(MUSCA SEP3), in development at ONERA since 2007, aims at 
evaluating the SEE risks within the framework of research and 
industrial applications. Therefore, MUSCA SEP3 has been designed 
to be part of the overall device qualification methodology, to allow 
emerging risks or problems to be anticipated, as expected from the 
technology roadmap (ITRS -International Technology Roadmap for 
Semiconductors) or new applications, and to support the analysis 
of in-flight anomalies. In addition, the chosen approach accounts for 
structure geometry and design rules and thus helps the investigation 

of the SET characteristics and sensitivities as a function of a cell 
design, representing an opportunity to define and validate solutions 
for SET mitigations or hardening by design process.

SEU (Single Event Upset) estimate is performed by means of MUSCA 
SEP3, whose detailed framework is presented in previous works 
[Ref. 1, Ref. 2, Ref. 3]. It is based on a Monte Carlo approach, and 
consists in sequentially modeling all of the physical and electrical 
mechanisms, from the global system down to the semiconductor 
target: (a)  the radiation field, (b)  the transport mechanisms of 
radiation particles (protons, neutrons or heavy ions) through the 
materials comprising the shielding and the Back-End Of Line (BEOL), 
(c)  the generation of electron-hole pairs in the semiconductor via 
direct or indirect ionization mechanisms, (d) the charge transport and 
collection mechanisms in the Front-End Of Line (FEOL), (e) the circuit 
electrical response. The modeling of radiation effects in nanoscale 
devices implies taking into account a high-level physical description. 
Thus, realistic primary or secondary ion track structures from 
databases generated by GEANT4 can be coupled with MUSCA SEP3 
to model the 3D structure charge deposition by the incident particle 
[Ref.  4]. 3D carrier morphology evolves according to mechanisms 
like drift (electric field), diffusion (carrier concentration gradient), 
collection and recombination processes. Bipolar amplifications can 
also be considered. Thus, models describing the transport and 
collection mechanisms mainly resulted from TCAD simulations, and 
were calibrated for investigated technological nodes. The particle-
induced parasitic currents disturb the circuit response; this will 
depend on the transient characteristics (duration, amplitude, shape 
and multiplicity). Transient currents can be injected on each collection 
node, i.e., the drains of each transistor. 

With this tool, it is possible to address numeric circuits (up to a few 
hundreds of transistors), and destructive effects in power devices. 
Moreover, the continuous evolution towards a more technological 
integration brings with it a new set of error mechanisms or problems 
requiring basic research and scientific investigation to propose 
alternatives to the obsolete models.

Heavy ion

Drain

Neutron, 
proton

I(t)

Collection
Diffusion

Figure 2 – Principles for charge generation and collection leading to SET 
occurrence at the transistor drain. This SET is at the origin of the electrical 
disruption that may trigger an SEE event at the circuit (functional) level

Cell/design layout 
Reverse, ITRS, GDS

Circuit level 
Circuit schematic 

Physical Design kit

Transport/collection 
from: TCAD, ITRS

Materials

Environment

Interaction

Electrical simulation

Environment

Circuit effect or propagation

Transport in matter
 e/h in semi conductor

Transport-collection
SEE occurence

Material environment

Device/circuit 
description

Figure 3 – The MUSCA SEP3 platform integrates the whole physical modeling chain (sequentially) from charge injection down to the event mechanism account-
ing for the sensitive structure within its global and local environments (hard – material and soft – application)
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Data assimilation

Within the framework of a standard qualification, the experimental 
evaluation of SEE sensitivity for a device requires a complex test plan 
under many measurement conditions: different particle species and 
energies (definition of the mode of charge injection), many flux and 
fluence levels for plotting sensitivity curves, covering the response 
to most of the expected environmental conditions. This approach is 
expensive and time-demanding.

The MUSCA SEP3 core approach is based on a technological 
description of the target structure associated with representative 
physical parameters, in order to describe the device response to any 
type of environment (space, atmospheric and terrestrial applications). 
Thus, the MUSCA SEP3 can be considered as a virtual irradiator. This 
set of physical parameters can be reduced to a set of the most critical 
parameters within the framework of an industrial application and project 
context, without much affecting the validity of the final results, in order 
to meet the industrial constraints (timescale, cost, available information, 
etc.). However, as for any modeling approach, experimental data are 
required to validate the models and obviously the level of reliability and 
precision of the tool will be defined by the quantity of measurements 
that can be considered for this "calibration" step.

Figure  4 shows some results of memory sensitivity to protons 
determined from heavy ion experiments and vice versa (by data 
assimilation, the first results from this approach can be found in 
Ref.  1). Indeed, the proton cross-section is used to determine the 
critical charge by fit process, and then this critical charge value is 
considered to calculate the heavy ion response. This assimilation 
process can be applied for any radiation fields.

With such use, the MUSCA SEP3 contribution helps to optimize a 
test plan (selection of a minimum set of beam conditions to obtain a 
satisfactory radiation response description) and to complete a data 
set without performing a large number of tests (gain cost and time 
for a project).

Test plan definition

Temperature effect on SET feature induced by ionizing particles, such as 
heavy ions, have mostly been studied for a high temperature range over 
the last decades. For infrared technologies, investigations have been 
dedicated to very low temperatures down to 77K (supported by CNES). 
This study was focused on the SEU sensitivity of D Flip-Flops used in the 
readout circuit of a CMOS image sensor developed by Sofradir.

The SEU sensitivity estimate obtained by calculations with MUSCA 
SEP3 has been compared with success to preliminary experimen-
tal data obtained from an irradiation test campaign performed by the 
CNES in 2014. However, a strong variability of the experimental data 
was observed although the error bars of the measured events were 
limited (statistical uncertainties). The interest of the MUSCA SEP3 
prediction platform is, in addition to the estimation of SEE cross-
sections, to allow for a failure analysis at the design and transistor 
levels, as shown in Figure 5 for a DFF cell. 

It is interesting to note here that the critical features of the SEE sensitive 
zones associated with the logical states "1" (in red) and "0" (in blue) of 
the DFF are diversified (area and shape) and scattered (location). 
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Figure 4 – Comparison of measured and calculated cross-sections in the 
case of a RAM memory. (a) Heavy ion-to-proton calculation compared to 
proton experimental data, (b) Proton-to-heavy ion calculation compared to 
heavy ion experimental data.
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Figure 5 – SEU sensitivity mapping of the DFF cell reference design, as a func-
tion of the stored data, a) "0" (blue areas) and b) "1" (red areas) at 300K. The 
locations, shapes and areas of the critical zones determined by multi-collection 
and circuit effects affect the global measured SEU cross-section.
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SEE phenomena are probabilistic by nature; any disparity in the to-
pological origins of the events can induce strong variability of the 
measured SEU cross-sections, if the number of measured events 
is not statistically significant relative to the DFF cell area and the 
number of critical zones. Indeed, only 20 errors were measured 
during the first irradiation campaign in June 2014, while over 160 
events have been estimated by MUSCA SEP3 for a relevant map-
ping of SEU events (Figure 5). Thus, in 2015 the experimental 
setup of the second irradiation campaign was defined using the 
MUSCA SEP3 calculations as inputs, in order to achieve the best 
trade-off for the relevant par ticle fluence to be used (which was 
actually increased by a factor of 5). Figure 6 shows the impact 
of fluence on the measured SEU variability (a) and compares the 
measurements and calculations for both irradiation campaigns (b) 
[Ref. 5]. 

Thus, the interest of such a SEE prediction platform has been shown: 
first for the estimation of the SEE sensitivity, second for failure analy-
sis (impact of the design), and third for the definition of the experi-
mental setup of irradiation campaigns, constituting a major asset to 
reduce the cost defined by the space industry roadmap. 

Modeling of ionizing dose phenomena with the AC-DC code

The AC-DC code (Analytical Computing of Dose -induced Charges) 
was developed at ONERA-DESP with the aim of developing a physical 
tool to finely describe the TiD (Total Ionizing Dose) mechanisms in the 
circuits. This degradation effect is related to the trapping of charges 
in the insulating zones (often SiO2) of transistors and/or isolation of 
the active areas of the circuits. Although the mechanisms of genera-
tion, recombination, transport, and charge trapping in insulators and 
interfaces are well known [Ref. 6, Ref. 7], due to the number of pa-
rameters and sensitivity it is difficult to implement models capable of 
predicting the response of a circuit at the functional level.

This "physical modeling" approach is undeveloped in the community, 
but was chosen as the back track for experimental investigations in 
the department. The AC-DC code has been developed with the aim 
of answering questions arising from the circuit evaluation methods, 
as well as regarding the influence of critical experimental parameters 
(temperature, dose rate, bias, etc. [Ref. 8]). It describes in a SiO2 lay-
er the charge generation and initial recombination, the free electrons 
and the hole diffusion and transport, the deep and shallow trapping/
de-trapping processes and the [H+] ions generation and transport. 
At the SiO2 /Si interface, the interface state generation and the holes 
trapping on these interface states are modeled [Ref. 9]. Finally, the in-
terface trapped holes profile is calculated, taking into account thermal 
and tunnel-assisted annealing processes [Ref. 10]. The main physical 
processes are electrical field-dependent; a coupled solving of Pois-
son and drift–diffusion equations has been implemented in a 1D MOS 
structure. All of the well-known dependencies on temperature are ex-
plicit for all of the physical processes, in order to evaluate the effect 
of temperature on electrical degradation.

The AC-DC code was first used to study the ELDRS (Enhanced Low 
Dose Rate Sensitivity) mechanism observed in bipolar technology es-
sentially. When ELDRS occurs, an electrostatic shielding mechanism 
(Figure  7) limits the degradation at a high dose rate and therefore 
becomes critical at low rates since the degradation in a spatial ap-
plication is stronger than under ground evaluation conditions.
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Figure 6 – (a) SEU Statistic variability as a function of fluence for 420 MeV Xe 
and 756  MeV  Kr ions, calculated by MUSCA SEP3 for the reference 
design of the DFF. (b) Comparison of the experimental data obtained from 
both irradiation campaigns (2014 and 2015) with the SEU cross-sections 
calculated by MUSCA SEP3 as a function of the logic state of the DFF.
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In 2012, tests on a representative set of components were conducted 
for ESA as the basis for the definition of recommendations, as part of 
the establishment of the new Test Standard ECSS22900 (dose rates: 
36-360rad/h, Figure 8 left).

AC-DC modeling has shown that accelerated configuration could 
be proposed. When a temperature of 40°C is applied during irradia-
tion, the experimental standard dose rate provides a conservative 
estimate of the TiD resistance of devices relative to the space dose 
rate; indeed, the quantity of trapped charges induced at ground test-
ing remains a worst case (Figure 8 right). Obviously, this approach 
requires a "calibration phase", since many physical parameters are 
technology-dependent (quality of the oxide). However, such a tool is 
helpful for proposing an optimized test configuration.

Another example is that of IR sensors operating at temperatures 
near 80 K (study classified as confidential). The TiD response at 
such temperatures is not well known and requires modeling as 
support for analysis (impact of charge trapping and transport).  

The experiment developed to answer these questions is based on 
the evolution of the amount of charge during a rise in temperature 
after irradiation at 80 K on appropriate test vehicles (MOS transis-
tors) and various topologies (design influence). For this type of top-
ic, where experimentation is quite heavy (irradiation of components 
in cryostats, use of liquid nitrogen) and few results are available in 
the literature, modeling the physics with AC-DC is a valuable tool 
to select the critical experimental parameters and to help in the in-
terpretation of results. In particular, it enables the evaluation of the 
theoretical response of a MOS structures irradiated at 80 K during a 
temperature ramp (Figure 9).

In the figures below, the calculated degradation is represented by the 
two characteristic quantities, volume (Qot) and interface (Qit) charge 
concentrations, and for three dose rates. The 80K degradation that is 
observed immediately after irradiation is not the worst-case situation 
(as opposed to 150 K), both from the point of view of the volume or 
interface charges. The use of experimental results obtained at 80 K 
will have to consider this behavior. 
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At DESP, the existing experimental facilities (particle accelerators, charac-
terization tools as DLTS equipment, test bench, etc.) and the numerical 
modeling capabilities (radiation-matter interaction tool) allowed for de-
veloping over years a deep background knowledge on physical mecha-
nisms and thereby adequate and representative degradation models.
For instance, an effective NIEL parameter has been proposed as an 
improvement of NIEL calculations for predicting mean degradations 
[Ref. 11, Ref. 12]. In Figure 11, the deviation between calculations 
with classical NIEL (blue line) and experimental observations (sym-
bols) can be observed. These deviations may come from experimen-
tal uncertainties, but more from the rough estimate of the NIEL values. 
Based on molecular dynamics data showing how the formation of 
amorphous zones (localized melting of the target matter) can modify 
the quantity of radiation-induced defects, the concept of effective 
NIEL was developed and successfully compared with existing data 
(red line).

These data illustrate the benefit of modeling here to provide a better 
description of the device response (life prediction) and to help in the 
selection of appropriate beam parameters for final testing.

Conclusions and perspectives

Over the last decades, the concern for radiation effects has extended 
to the fields of avionics, automotive, large computers and network-
ing, etc., and to an ever wider range of technologies (CMOS, FDSOI 
and FinFET devices, as well as power components, SiC technology, 
etc.) and deeper integration. With the growing need for on-board 
computing, criticality increases and new mechanisms emerge (di-
rect ionization from protons, neutrons-and muons, lately electron-
induced anomalies, and now synergy between ageing and the radia-
tion –reliability concern, etc.).

Nowadays, space missions are more diversified, leading to the defini-
tion of new environmental conditions (use of electrical orbit raising 
EOR, scientific missions with extreme conditions, mega-constel-
lations, etc.). The "materials" topic is also concerned, for instance, 
with the EOR orbits inducing a higher electrons flux and higher doses 
(enhanced ageing and charging effects).

Thus, coupling modeling and experimentation begins inevitably with 
the anticipation of emerging phenomena in a constantly evolving con-
text. However, access to the technology is now vital and development 
times are often too long for project timeframes. A realistic and prag-
matic approach is therefore mandatory for future generations of tools 
(modularity, application-oriented, validity domain, etc) 

Displacement defects and the effective NIEL concept

The displacement damage and ionizing dose often combine to affect 
the performance of image sensors and, more generally, optoelectron-
ics (Figure 10). The atoms displaced by proton or electron irradiation 
are at the origin of degradation mechanisms involving a non-ionizing 
dose. These defects can be electrically-active, and affect the charge 
carrier physics (generation, recombination, trapping, diffusion, etc.), 
which in turn degrades the electrical performance of circuits (for in-
stance, an increase in the background dark current noise).

Generally, mean degradations vary linearly with NIEL (Non-Ionizing 
Energy Loss) when applying the NIEL scaling law, which considers 
that damage is proportional to the product of NIEL by the particle flu-
ence. But deviations are observed, especially with electrons and also 
in cases of III-V semiconductor devices.

Cluster of defects

Incident proton

Figure 10 – Calculation with AC-DC changes in the amount of volume (left) 
and interface (right) charges depending on irradiation temperature and for 
three dose rates.
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Acronyms

AC-DC	 (Analytical Computing of Dose-induced Charges (code))
BEOL 	 (Back-End Of Line)
CMOS, FDSOI and FinFET devices
DFF	 (D Flip-Flop cell)
ELDRS 	 (Enhanced Low-Dose Rate Sensitivity)
EOR	 (Electric Orbit Raising)
FEOL	 (Front-End Of Line)
ITRS	 (International Technology Roadmap for Semiconductors)
MOS	 (Metal-Oxide-Semiconductor (structure))
MUSCA SEP3	 (MUlti-SCAles Single Event Phenomena Predictive Platform)
NIEL	 (Non-Ionizing Energy Loss)
SEE	 (Single Event Effect)
SET	 (Single Event Transient)
SEU 	 (Single Event Upset)
TCAD	 (Technology Computer-Aided Design (tool))
TiD	 (Total Ionizing Dose)
TniD	 (Total Non-Ionizing Dose)
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