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Anew design methodology inspired by dynamic inversion techniques is proposed in 
this paper. It combines partially linearizing inner-loops with structured and robust 

outer-loops, which are designed using a non-smooth multi-model H∞ optimization 
approach. The proposed methodology also includes a robustness analysis scheme 
providing worst-case configurations, which are then used to enrich the bank of design 
models and thus iteratively improve the robustness properties of the designed outer-
loops. Our approach is successfully tested on a realistic nonlinear aircraft control 
problem subject to large parametric variations and uncertainties.

Introduction

Robust feedback linearization techniques [10] have proved their effi-
ciency in many aerospace applications, especially to control highly 
maneuverable aircraft or UAVs in large operating domains [25, 2, 20, 
21, 11, 4]. Interestingly, such techniques do not only permit a large 
class of nonlinear systems to be linearized and decoupled, but also 
make it possible to adapt the control laws to the operating point. Thus, 
they become a competitive alternative to standard gain-scheduling 
techniques, which often entail many adjustments, or to LPV control 
design strategies, which require high fidelity LPV models [15]. How-
ever, standard dynamic inversion methods are often criticized for their 
lack of robustness and the need for an accurate model. This draw-
back is generally bypassed via robust linear outer-loops [6], which 
still require difficult and possibly time-consuming robustness evalu-
ation a posteriori [18, 19]. Severe problems are also likely to occur 
when the actuator dynamics and limitations prevent an exact cancel-
lation of the nonlinear terms. As emphasized in [12], it is therefore 
essential to take these dynamics into account in the design process. 
As observed in [8], one of the main reasons why standard dynamic 
inversion schemes exhibit poor robustness properties is due to the 
fact that the linearizing inner-loops are designed to convert the non-
linear system into a generic Brunovsky's form. Following an intui-
tive path, it is then proposed in [8] to design the inner-loops so that, 
for given operating conditions, the nonlinear system will converge 
to its Jacobian linearization. Hence, the design of the linear robust 
outer-loops is no longer based on a generic model, but now explicitly 
depends on the linearized dynamics of the initial plant. A similar path, 
consisting of promoting interactions between inner and outer loops, is 

followed in this paper. More precisely, as in [8] a feedback lineariza-
tion step is applied so that, in some enlarged neighborhood of given 
trim conditions, the nonlinear plant behaves like its linearization. In 
a second step, a robust linear outer-loop is designed. The original-
ity of our approach lies in the particular structure of our H∞-based 
outer controller, which uses a nonlinear input as a key input to further 
enlarge the operating domain of the nonlinear closed-loop system. 
Various uncertainties are also taken into account in our procedure by 
a μ -based robustness analysis phase, during which worst-case con-
figurations are identified and then used in an iterative multi-objective 
and multi-model H∞ design process. It should be pointed out here that 
the resolution of such highly non-convex optimization problems has 
considerably improved in the past few years with recent advances in 
non-smooth H∞ optimization algorithms [3, 9]. Indeed, the latter now 
make it possible to fix the order of the H∞ controller as well as its 
structure and to consider multi-channel objectives and multiple mod-
els simultaneously, in order to increase the robustness margins. Such 
algorithms will then be a key ingredient in our proposed methodology.

The paper is organized as follows. A thorough description of the pro-
posed methodology with its three main steps is first given. An appli-
cation to a realistic landing aircraft control problem is then detailed. 
More precisely, we focuse on the longitudinal part and give many 
details on how the method is applied. Then we briefly deal with the 
lateral part of the control problem, before presenting the global land-
ing application on the full nonlinear aircraft model using the designed 
controller. Finally, we conclude the paper.
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Description of the methodology

Robust Nonlinear Compensation Technique

Consider a continuous-time parameter-dependent nonlinear input-
affine system described as follows

	
( ) ( ) ( )( ) ( ) ( )( ) ( )
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p p
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where ( ) ntξ ∈  denotes the physical states evolving in the admissi-
ble operating domain n⊂  . The realized control inputs ( ) mu t ∈  
are derived from the commanded inputs ( ) m

cu t ∈  via linear time-
invariant actuators – denoted by (.)AL  – with unitary static gains. 
The nonlinearities and parametric variations of the system are cap-
tured by ( ).,. nf ∈  and ( ).,. n mG ×∈ , which both nonlinearly 
depend not only on the state vector but also on a set of parameters 
( ) r

p tθ ∈Θ ⊂  .

Notation 1
Let us denote ( ), , n r m

p uξ θ ∈ × ×    an equilibrium point for sys-
tem (1), thus satisfying: 

	 ( ) ( ), , = = 0p pf G u f Guξ θ ξ θ+ + 	 (2)

and rewrite ( ) ( )( ), pf t tξ θ  as follows: 

	 ( ) ( )( ) ( ) ( ), =p ff t t f Ax t tξ θ + + ∆ 	 (3)

where: 
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and where ( )
f t∆  denotes the deviation between the nonlinear func-

tion ( ).,.f  and its linear approximation.

Assumption 1
There exists a constant matrix n mB ×∈  such that, for all 

( ) ( )( ), pt tξ θ ∈ ×Θ , a nonsingular matrix m m×Λ∈  and a resid-
ual error matrix n m

G
×∆ ∈  can be found such that:

	 ( ) ( )( ), =p GG t t Bξ θ Λ + ∆ 	 (5)

	 ( ) ( )( ) ( )( )1 1,m
A At L t L tυ υ υ− −∀ ∈ Λ ≈ Λ 	 (6)

The square matrix Λ  typically represents the control input efficiency. 
When considering aerospace systems evolving in standard operating 
domains, the above non-singularity assumption – connected to the 
notion of controllability – is not restrictive. Moreover, the variations of this 
diagonal-dominant matrix are mainly induced by slowly-varying terms, 
such as the dynamic pressure. This observation justifies the commu-
tative property (6) between 1−Λ  and the fast dynamics (.)AL  of the 
actuators. Yet, a possible relaxation of (6) is introduced next.

Given any two signals ( ) mv t ∈  and ( ) mtζ ∈ , let us now define 
the intermediate, input linearizing, control law 

	 ( ) ( ) ( )( ) ( ) ( )( )1
= ,c pu t t t v t t uξ θ ζ

−
Λ − + 	 (7)

Combining equations (7) and (1), one readily obtains with the above 
notation in mind: 
	 ( )= A f ux Ax BL v w w+ + + 	 (8)

where:
	 ( )=f f Aw BL ζ∆ − 	 (9)

	 ( ) ( )1=u G Aw G G u L v ζ−− + ∆ Λ − 	 (10)

As is clear from Equation (8), where parametric-dependence and 
time-dependence have been omitted to alleviate notation, the param-
eter-dependent nonlinear system (1) has been reduced to a linear 
model with a new control input v and two measured perturbations fw  
and uw . As is usual in dynamic inversion schemes, fw  can be partly 
canceled by an optimal choice of the auxiliary input signal ( )tζ : 

	 ( )
( )

( ) ( )( )ˆ = min
m f A

t
t Arg t BL t

ζ
ζ ζ

∈
∆ −


	 (11)

Remark 1
In the special case of square systems with idealized actuators (i.e., 

( )( ) ( )=AL u t u t ), one easily obtains = 0fw  with ( ) ( )1ˆ = ft B tζ − ∆ .

Let us denote by = f uw w w+  the vector of remaining input pertur-
bations, which cannot be canceled, and assume that the latter is 
available for feedback, via estimation, at least on a limited band-
width. The following structure for the linear outer-loop may thus be 
considered: 

	 ( )
ˆ

= c

w
v K s w

y

 
 
 
 
 

	 (12)

where ŵ , cw  and y denote respectively the estimation of w, the 
target on the variables z to be tracked and the measurement signal. 
Without any significant loss of generality in most applications, both 
( ) ( )= py t Cx t ∈  and ( ) ( )= qz t Lx t ∈  are assumed to depend 

linearly on the state vector. The output feedback gain ( )K s  in (12) is 
to be designed so as to satisfy the following requirements:

•	 good tracking properties, by minimizing the error between z and 
the reference signal ( )=r cz R s w , where the LTI model ( )R s  
describes the nominal reference closed-loop dynamics,

•	 a reasonable control activity, which is indirectly obtained by lim-
iting v to avoid control input saturations, 

•	 good rejection of the perturbations = u fw w w+  that could not 
be entirely removed by the linearizing inner loop to enlarge the 
operating domain.

Denoting by ( )
A sΣ  the transfer matrix associated to the linear opera-

tor (.)AL  and by ( )sΣ  the linearized plant interconnection: 

	 ( ) ( ) [ ]1=
L

s sI A I B
C

− 
Σ − 

 
	 (13)

the above outer-loop design issue can be recast into a linear frame-
work as a multi-objective H∞ minimization problem. More precisely, 
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considering the linear interconnection of Figure 1, it is proposed to 
compute ( )K s  as follows:

	 ( )
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The H∞-norm minimization considered in (14) corresponds to 
the nominal tracking requirement. As is standard in H∞ design 
approaches, a weighting function – typically a low-pass filter – ( )

pW s  
is introduced to specify the frequency domain where the tracking 
performance should be more efficient. Next, the second and third 
requirements are respectively taken into account by the additional 
two constraints in (15). The first one involves a high-pass weighting 
function ( )

uW s  to minimize the control activity in the high-frequency 
domain. Finally, note the presence of a low-pass function denoted by 
( )F s , which can be viewed as an approximation of the estimation 

process ( ( )ŵ F s w≈ ).

Problem (14)-(15) is a difficult non-convex and non-smooth optimi-
zation problem. However, it is now efficiently solved thanks to recent 
advances in non-smooth optimization techniques [3, 9]. Moreover, 
the structure of the controller as well as its order can also be fixed  
a priori, which makes the implementation easier. Last but not least, 
multiple models can be considered simultaneously during the design 
procedure. This flexibility will be used below to improve the robust-
ness properties of our proposed design scheme.

Preliminary LTI Robustness Analysis

After an initial controller has been obtained as the solution of the 
above multi-objective design problem, closer attention is now paid to 
the validity of a few approximations that were made and their potential 
impact on the closed-loop behavior. More precisely, it is shown here 
how LTI robustness analysis tools (such as μ or skew-f bounds) can 
be used to detect potential difficulties induced by three main sources 
of uncertainties.

Plant uncertainties

When combining Equations (7) and (1) to obtain (8), it is assumed 
that both f and G are well known. However, in practice, uncertainties 
δ are always present so that Equation (8) is now written as: 

	 ( ) ( ) ( )= Ax A x B L v wδ δ+ + 	 (16)

where [ ]1= T l
lδ δ δ ∈  . Assuming that both A and B rationally 

depend on δ, it is then possible through an LFT modeling approach 
[14] to rewrite ( )sΣ  as the following Linear Fractional Representation 
(LFR), as depicted in Figure 2: 

	 ( ) ( )( )= ,u Ms M sΣ ∆ 	 (17)

where (.)u  denotes the upper Linear Fractional Transformation 
(LFT), ( )M s  is an LTI system and: 

	 ( ){ }11= , , ,
lM M k l k idiag I Iδ δ δ∆ ∈∆ ∈  	 (18)

Actuator uncertainties

In Assumption 1, the commutative property (6) might not be valid in 
all cases. Following [5], it is then proposed to relax it as follows. 

Assumption 2
There exist a nonlinear bounded operator (.)Γ  and a positive bound 
k +
Γ ∈  such that ( ) mtυ∀ ∈ :

	 ( )( ) ( )( ) ( )( )1 1=A AL t L t tυ υ υ− −Λ Λ +Γ 	 (19)

	 ( )( ) ( )t k tυ υΓΓ ≤ 	 (20)

It results from Assumption  2 that the linear model ( )
A sΣ  in 

Figure 1 should now be replaced by the nonlinear uncertain version 
( ) ( ).A sΣ +Γ , as illustrated in Figure 2.

Estimation uncertainties

Finally, one should notice that only an estimated ŵ of the nonlin-
ear input perturbations w is available to the outer-loop controller 
( )K̂ s . While this estimation process has been taken into account in 

the design phase through the approximation ( )ŵ F s w≈ , it might be 
too optimistic in practice. A diagonal perturbation block w∆  will then 
be considered to introduce some multiplicative uncertainties on the 
signal so that ŵ is now transformed into ( ) ˆwI w+ ∆ . This is also 
visualized in the robustness analysis diagram in Figure 2.

As is usual in any standard LFT modeling process, the three uncertain 
blocks that have been described above are normalized, merged into 
a single block-diagonal operator ( )= , (.),M wdiag∆ ∆ Γ ∆  and pulled 
out to generate an augmented linear model ( )P s . These operations 
are summarized in Figure 3. The APRICOT Library from the Matlab 
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Figure 1 – H∞ design-oriented scheme.
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Figure 2 – Closed-loop scheme for LTI stability analysis.
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Toolbox SMAC [22] can be used to generate such an LFT, from a set 
of LTI models.

Temporarily assuming that Δ is a time-invariant operator, μ or skew-μ 
analysis can be used to quantify, respectively, the stability and perfor-
mance properties of the uncertain closed-loop depicted in Figure 3. 
Using the SMART Library from the Matlab Toolbox SMAC [22] allows 
bounds on the structured singular value [24] to be computed. Since 
Δ has been normalized, the system is said to be robustly stable to LTI 
perturbations if the μ upper-bound verifies < 1µ . Otherwise, a desta-
bilizing worst-case perturbation Δ* might exist such that ( )* < 1σ ∆ .

Multi-model Design

Using the above robustness analysis results, two main ways exist to 
improve the initial controller ( )K̂ s . Since it was designed within the 
H∞ framework, a natural way consists in using a μ -synthesis approach. 
While this strategy, already implemented in MATLAB™ [26], works well 
in the case of complex-valued uncertainties, numerical difficulties are 
often reported with real-valued uncertain parameters. Moreover, results 
might be quite conservative in that case. For these reasons, the alterna-
tive path, consisting of a multi-model design approach, will be preferred 
next. First considered in [1], this intuitive approach leads to non-convex 
optimization problems. However, as has been already pointed out, it 
has regained interest recently thanks to the flexibility of non-smooth 
H∞ optimization algorithms. The latter indeed offer new perspectives in 
this direction, since multiple models can be considered simultaneously. 
From this observation, a simple iterative algorithm can be proposed. 
Starting from a single-model design, the principle consists of analysis 
& multi-model design iterations. During the analysis step, worst-case 
configurations (associated with Δ*) are isolated, in order to enrich the 
bank of models to be considered in the next design step. This is sum-
marized below.

Algorithm 1
Robust multi-model design

1.	 Define a nominal configuration model ( )
0 sΣ  using the input lin-

earizing inner-loop control law (7), leading to (8).

2.	 Set 0i =  and solve (14)-(15) to compute an initial controller ( )
0K̂ s .

3.	 Perform LFT modeling & robustness analysis pursuant to previous 
Subsection. Extract a destabilizing perturbation *

i∆ . If ( )* < 1iσ ∆ , 
then go to Step 4, otherwise go to Step 5.

4.	 Enrich the bank of models with *
i∆ , set 1i i← + , compute ( )ˆ

iK s  
via multi-model H∞ design and return to Step 3.

5.	 Perform a final robustness analysis with μ upper-bound evaluation.

Remark 2
Unlike μ -synthesis based approaches, the above algorithm imple-
ments necessary conditions for robust stability with respect to LTI 
perturbations, which become sufficient if the μ upper-bound in 
Step 1) is less than 1.

Towards a Global Robustness Analysis

In the simplified robustness analysis approach of page 3, the non-
linear input signal w is considered as an external perturbation. Yet, 
considering Equations (8) and (9), it is clear that w may depend on x 
and pθ  in a quite complicated way. Consequently, robustness analysis 
becomes tricky in the most general case. Fortunately, with a good 
knowledge of the studied process, reasonably simpler approxima-
tions can be obtained in practice, such as: 

	 ( ) ( )= pw H x W xθ + 	 (21)

with the following assumptions:
•	 (.)H  is assumed to depend rationally on pθ , and can thus be 

rewritten as an LFT.
•	 the nonlinear operator ( )W x  satisfies Lipschitz conditions.

Hence, the LFT ( )( ),uF P s ∆  of Figure 3 – further denoted 
( )( ),uF P s ∆   – is modified to include additional blocks in ∆  so that 

w will no longer appear as an external perturbation:

	 ( )= , (.), , (.),M w pdiag W∆ ∆ Γ ∆ Θ 	 (22)

The extended uncertain operator ∆  now clearly contains uncertain-
ties ΔM, Δw and time-varying parameters pΘ  as well as memory-
less nonlinearities (.)Γ  and (.)W . Robustness analysis then must 
be performed with more general tools based, for example, on the IQC 
framework [16].

Application to longitudinal aircraft control design

The above robust nonlinear compensation framework is now applied 
to a longitudinal aircraft control problem. Note that the lateral motion is 
not yet considered, assuming a steady flat-wing aircraft with no side-
slip. Lateral controller design will be described while global simulations 
with both combined motions will be presented.

Nonlinear Longitudinal Aircraft Model

The longitudinal motion of a civil aircraft can be described by the fol-
lowing 4-state model [7]: 

	 ( )
( )

ˆ= ( )
ˆ= , , ,

ˆ= , , ,
=

D

L e

m e e
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− +

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









	 (23)
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Figure 3 – LFT of the system for LTI robustness analysis.
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where V is the airspeed, γ  is the flight path angle, q is the pitch rate, 
θ is the pitch angle, 21

2=q Vρ  is the dynamic pressure, J is the 
longitudinal inertia, m is the mass, S is the reference surface, L is the 
reference length (often taken as the half span), ρ is the air density, 
α is the angle of attack ( =α θ γ− ), F is the engine thrust on the 
longitudinal axis and ze is the vertical shift between the position of the 
center of gravity and the thrust application point. The drag, lift and 
pitching coefficients ˆ

DC , ˆ
LC  and ˆ

mC  can be expressed as follows:
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
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

	 (24)

where eδ  is the elevator deflection angle and the Cxy are fixed aerody-
namic coefficients, whose values can be obtained from the benchmark 
library of the SMAC Toolbox1 and do not depend on the Mach number. 
Here = [    ]TV qξ γ θ , = [  ]T

eu Fδ  and 0= [   ]T
p cgm x Vθ , where xcg is 

the center of gravity position and V0 is the initial airspeed. The operat-
ing domain for a landing application is such that [60 90] /V m s∈ , 

[123180]m tons∈  and [15 41] %cgx ∈ , defining the admissible set 
Θ. F and eδ  follow the first-order actuator dynamics ( )

A sΣ :

	 ( )
1

2 1
1

0.07 1

0
=

0A
s

s
s +

+

 
Σ  

 
	 (25)

Remark 3
Using first-order models for the actuators is common practice in the 
aeronautical industry, and it is sufficiently representative here. How-
ever, rate limitations are neglected, but it would be possible to add an 
anti-windup controller to take them into account.

The aerodynamic coefficients can have up to 30% of multiplica-
tive uncertainties. Using the notation of (1) and applying (5) from 
Assumption 1, (23) is rewritten the same way with: 

	
1 0 0 0

=  =
0 0 1 0

D
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C

δ

δ

α α
 
  
 Λ ∆       
 

	

Remark 4
Given the operating domain of the system, Λ is non-singular. Further-
more, Λ is slowly varying, since its dynamics mainly come from the 
dynamic pressure q . These two conditions verify Assumption 1.

1	 http://w3.onera.fr/smac/

Remark 5
The choice of B was made based on the maximum control efficiency. 
Indeed, as is clear from (23), the thrust input F mainly affects the 
airspeed V, and the elevator deflection eδ  has a large impact on the 
pitch rate q.

The goal is to track the airspeed V and the flight path angle γ , and the 
state is assumed to be fully available to the controller, yielding C = I. 
The reference model ( )R s  for the airspeed (1st order dynamics) and 
the flight path angle (3rd order dynamics) is given by:

	
( )( )

2

2 2

1
6.5 1

0.35
2 1 2*0.7*0.35 0.35

0
( ) =

0
s

s s s

R s
+

+ + +

 
 
 
 

	 (26)

Nonlinear Compensation Technique

Using the previous notation it is now possible to apply the method 
described in page 2. First applying the control input (7) leads to the 
linearized system (8). ζ̂  is chosen so that wf only preserves the non-
linear terms on the flight path angle dynamics γ , canceling the non-
linear dynamics on Va and q. The nominal configuration pθ  is set 
for a mass of 150 tons, a center of gravity position at 21%, an initial 
airspeed of 70 m/s and an altitude of 300 m (landing configuration). 
This configuration is "central" in terms of the system pole location, 
ensuring that the other configurations are covered as much as pos-
sible when designing the robust controller. Choosing a worst-case 
configuration could also be a possibility, but the nominal performance 
is highly degraded in this case and the "opposite" worst-case configu-
rations may be harder to control. According to the specifications of 
the robust nonlinear compensation technique; the frequency weight-
ings ( )

pW s  and ( )
uW s  are chosen respectively as low-pass and 

high-pass filters:

	 ( )
4

4

/2 0.15
1.5 10

/20 0.40
4 10

0
=

0p
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s

s
s

W s
−

−

+
+ ×

+
+ ×
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	 (27)
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	 (28)

The filter ( )F s  is such that:

	 ( )

0.1
2 1

1
2 1

0.1
2 1

0 0 0
0 0 0

=
0 0 0
0 0 0 0

s

s

s
F s

+

+

+

 
 
 
 
 
 

	 (29)

The second term in (29) on the diagonal is higher than the others, since 
it is not compensated by the input signal ζ̂  (which only compensates 
for the first and the third nonlinear terms). This enables the controller to 
focus more on this one than on the others. The last term is 0 since the 
last equation in (23) does not contain any nonlinear terms.

A third-order controller is chosen, since it offers a good compromise 
between the achievable performance and a preferable low-order con-
troller for easier implementation. Solving the multi-objective H∞ mini-
mization problem (14)-(15) with the routine hinfstruct of the Robust 
Control Toolbox for Matlab [3] yields an H∞-norm of = 0.9653γ∞  
after a few iterations, thus insuring that the frequency-domain 
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specifications are fulfilled. Nonlinear simulations are performed with 
the obtained initial controller ( )

0K̂ s , and the corresponding results 
are depicted in Figure 4 and Figure 5.

In Figure 4, the aircraft responses to a 3 degree step demand on the 
flight path angle γ are visualized for various configurations of mass 

{ }∈ 120,150,180  tons, initial airspeed { }V ∈ 60,70,80  m/s, and cen-
ter-of-gravity locations { }cgx ∈ 15,20,40 %.

Similarly, the responses to a 3 m/s variation step demand on the lon-
gitudinal airspeed V are shown in Figure 5. In both cases, the dashed 
red plots correspond to the reference signals to be tracked.
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Figure 4 – Nonlinear Simulations with a 3° step on γ, for different initial aircraft configurations and no aerodynamic coefficient uncertainties, with the initial 
controller ( )
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Both simulations prove the effectiveness of the robust nonlinear 
compensation scheme with regard to performance and robustness 
properties. The flight domain is indeed very large thanks to the non-
linear compensation part of the controller being aimed at maintain-
ing as much as possible the nominal performance. The control-
ler manages to follow the reference models quite well, while also 
ensuring a good decoupling. Note however that no uncertainties 
in the aerodynamic coefficients have been considered yet. These 
will have significant impact on the performance and stability of the 
system, as will be shown in the next section dealing with robust 
stability analysis.

Robustness analysis and multi-model design

The above controller ( )
0K̂ s  has been designed to cope with a large 

operating domain under nominal conditions. The uncertain operators 
represented by "gray boxes" in Figure 2 have thus not been considered 
yet. The objective of this section is twofold. First, the effects of the 
aforementioned uncertainties are studied within the LTI frameworks 
with the help of μ-analysis tools. Next, the identified worst cases 
are used in a multi-model design strategy detailed in Algorithm 1 to 
improve the robustness properties of the initial controller. 

LTI modeling and μ-analysis

LFT modeling is a key step in our robustness analysis process. Start-
ing from the set of nonlinear equations (23), parametric uncertainties 
are first introduced in the aerodynamic coefficients:

	 ( ) ˆ= 1
DD C DC Cδ+ 	

	 ( ) ˆ= 1
LL C LC Cδ+ 	

	 ( ) ˆ= 1
mm C mC Cδ+ 	

and variations are also introduced in the airspeed V, mass m and 
center of gravity location: 0= VV V δ+ , 0= mm m δ+ , 

0
=

cgcg cg xx x δ+ . 
Next, the equations are linearized so that a bank of parameter-depen-
dent linear models, as described in (16), is obtained. From this con-
tinuous set, a low-order LFT model ( )( ),u MM s ∆  (see Eq. (17)) 
is rather easily obtained with the help of the most recent algorithms 
implemented in the APRICOT Library of the SMAC Toolbox [23]. These 
algorithms, using orthogonal least square techniques, are based on 
low-order polynomial interpolation methods. For this application the 
size of the M∆ -block is kept reasonably low:

	 ( ) 15 15
6 2 3 2 1 1= diag , , , , ,

D L m cgM V C C C m xI I I I I Iδ δ δ δ δ δ ×∆ ∈ 	

As a result, the size of the global ∆-block including ( ).Γ  and w∆  (see 
Figure 3) verifies:

	 ( ) 20 20= diag , ,M w
×

Γ∆ ∆ ∆ ∆ ∈ 	

A normalization step is finally applied so that variations of ∆ in the unit 
ball induce 30% uncertainties in the aerodynamic coefficients, and 
30% variations in w∆  and Γ∆ . Note that this last step is easily achieved 
with the LFT modeling library available in the SMAC Toolbox. Based 
on this normalized LFT object, both upper and lower bounds of the 
structured singular value μ are evaluated with the SMART Library of 

the SMAC Toolbox. With the nominal controller ( )
0K̂ s , a lower-bound 

1µ∆ >  is found together with its corresponding worst-case configura-
tion 1

∗∆  such that ( ) 1
1 = < 1σ µ∗ −

∆∆ .

Multi-model design

Following step 4 of Algorithm 1, 1
∗∆  is used to initialize our multi-model 

design procedure. Note that this case corresponds to a retracted posi-
tion of the center of gravity, maximum weight and high values of the 
aerodynamic coefficient uncertainties. After 5 more iterations, a new 
controller ( )K̂ s  is obtained that significantly improves the worst-case 
configuration. For this controller one indeed obtains < 1µ

∆
. However, 

using standard algorithms, the upper-bound µ∆ remains above 1, 
which does not make it possible to conclude on stability. Refined ver-
sions of the algorithm using branch-and-bound techniques [17], now 
available in the SMART Library, are then used, which greatly improves 
the accuracy of the upper-bound. One eventually obtains < 1µ∆ , as is 
summarized in Table 1.

Controller Lower-bound µ
∆

  Upper-bound µ∆

Nominal – DG-scaling 1.4610 1.5110 

Multi-model – DG-scaling 0.8957 1.0780

Multi-model – branch-and-bound 0.8999 0.9449

Table 1 – Values of the μ-bounds for the nominal and multi-model controllers. 
The computations for the multi-model controller are made using the initial 
DG-scaling method and the improved branch-and-bound algorithm.

Time-domain evaluation

To conclude this section, a few nonlinear simulations are performed 
with the above multi-model based controller. The flight path angle (γ ) 
and airspeed (V ) step demands are first applied for various aircraft 
configurations without uncertainties. The results, to be compared 
with those obtained with the nominal controller, are displayed in 
Figures 6 and 7.

As expected, the decoupling is a bit degraded and the responses are 
slightly slower but major improvements will be shown in the presence 
of uncertainties.

Let us now introduce 25% uncertainties in the aerodynamic coef-
ficients (not 30%, so that the nominal controller is not completely 
unstable). The aircraft responses to a step demand on γ are visualized 
in Figure 8. The left subplot (Figure 8a) reveals poor robustness prop-
erties of the nominal controller, while significant improvements are 
clearly observed on the right subplot (Figure 8b) with the multi-model 
controller. This clearly demonstrates the efficiency of the proposed 
methodology.

Application to lateral aircraft control design

Now that the method has been successfully applied on the longitudi-
nal part of the aircraft, the lateral part will be dealt with using the exact 
same strategy as explained below.
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Figure 6 – Nonlinear Simulations with a 3° step on γ, for different initial aircraft configurations and no aerodynamic coefficient uncertainties, with the multi-model 
controller ( )K̂ s .
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Figure 7 – Nonlinear Simulations with a 3 m/s step on V, for different initial aircraft configurations and no aerodynamic coefficient uncertainties, with the multi-
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Issue 13 - September 2017 - Nonlinear Structured H∞ Controllers
	 AL13-02	 9

Nonlinear Lateral Aircraft Model

The lateral motion of a civil aircraft can be described by the following 
4-state model [7]:

	

( ) (

( )
( )
( )

sin cos sin cos sin
cos sin cos cos sin cos sin

ˆ sin cos

tan sin cos
ˆ

ˆ

Y

zz n xx yy

xx l yy zz

mV mV p r mg

qSC F

p q r

I r qSLC I I pq

I p qSLC I I rq

β α α θ α β
θ φ β θ α φ β

β α

φ θ φ φ

 = − +
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+ −
 + −
 = + +
 = + −

 = + −









	 (30)

where β  and φ  are, respectively, the sideslip and roll angles, p and 
r are the roll and yaw rates, and Ixx and Izz are the inertias along the 
x-body and z-body axes. The side force, roll and yaw coefficients 
ˆ

YC , ˆ
lC  and ˆ

nC  are expressed as follows: 

( )( )

( )
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0 0
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ˆ =
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	 (31)

where aδ  and rδ  are the aileron and rudder deflection angles, and the 
xyC  are aerodynamic coefficients specific to the given aircraft. Using 

similar notations to those used in the longitudinal case, let us define: 
= [    ]Tr pξ β φ , = [  ]T

a ru δ δ  and 0= [   ]T
p cgm x Vθ . aδ  and rδ  follow 

the first-order actuator dynamics ( )
A sΣ : 

	 ( )
1

0.06 1
1

0.2 1

0
=

0A
s

s
s +

+

 
Σ  

 
	 (32)

Using the notation of (1) and applying (5) from Assumption 1, (23) is 
rewritten in the same way with:

0
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0 0
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a rzz zz

G

l l
a rxx xx

qSqSL qSL CC C mVI I
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Figure 8 – Comparison between the nominal controller ( )
0K̂ s  (a) and the multi-model controller ( )K̂ s  (b) for all admissible configurations with ±25% of 

uncertainties: γ  step responses versus time.
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The goal is to track the roll and sideslip angles φ  and β, respectively. 
The reference model ( )R s  is given by: 

	 ( )
2

2

2
2

1
2*0.75 10.800.80

1
2*0.75 10.750.75

0

=
0

s s

s s

R s
+

+ +

 
 
 
 
 
 

+
	 (33)

Remark 6
Note that some longitudinal state variables are present in the lateral 
dynamics equations. For the computation of the lateral controller it 
will be assumed that these variables maintain a predefined equilib-
rium. The simulations will be performed on the full model with the 
previous satisfactory longitudinal controller, in order to maintain the 
longitudinal equilibrium despite the lateral motion. 

Lateral Controller Design

The same method as for the computation of the longitudinal controller 
is used here (some details will be omitted). The nominal configuration 

pθ  is the same as before. For the lateral case, the frequency weight-
ings used for the H∞-design procedure ( )

pW s  and ( )
uW s  are chosen 

respectively as:

	 ( ) 3

3

/5 2.5
2.5 10

/5 1
1 10

0
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0p

s
s

s
s

W s
−

−

+
+ ×

+
+ ×

 
 
 
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	 (34)
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2
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0
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s
s

W s
+
+

+
+

 
 
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	 (35)

The filter ( )F s  is such that: (see the explanations for the choice of 
(29) for a better understanding)

	

1
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	 (36)

For the same reasons as for the longitudinal controller, a second-order 
controller is chosen. Solving the multi-objective H∞ minimization 
problem (14)-(15) with the routine hinfstruct of the Robust Control 
Toolbox for Matlab [3] yields a H∞-norm = 1.03γ∞  after a few itera-
tions. The stability of the closed-loop system with the initial "nominal" 
controller ( )

0K̂ s  is checked. Using the same strategy as for the lon-
gitudinal case, an LFT is computed yielding a "Δ-block" of dimension 
24 x 24. Then, both the upper and the lower bounds of the structured 
singular value μ  are evaluated yielding [ ]µ∆ ∈ 1.007 1.118 , which 
does not prove stability. Following Algorithm 1, after 3 iterations, the 
final controller ( )K̂ s  greatly improves the worst-case stability since 
now [ ]µ∆ ∈ 0.7948 0.8845 , which proves stability with respect to LTI 
uncertainties. Note that, unlike the longitudinal case, no branch-and-
bound techniques were needed here to reduce the gap between the 
lower and upper bounds.

Simulations were run for various initial configurations (different val-
ues of θp) and with ±30% uncertainties on the lateral aerodynamic 
coefficients (729 runs were executed). As expected, the lateral 
multi-model controller performs very well as shown in Figures  9 
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Figure 9 – Nonlinear Simulations with a 10 deg step on φ , for various initial aircraft configurations and ±30% aerodynamic coefficient uncertainties, with the 
lateral multi-model controller 10.
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and 10, where respectively the references of the roll and sideslip 
angles φ  and β  (red dashed line) are well tracked with reasonable 
control inputs aδ  and rδ . Furthermore, no sign of even slight insta-
bility is present and the decoupling is greatly ensured.

Global application: aircraft landing

Finally, the longitudinal and lateral controllers are tested on a realistic 
landing application. The Instrument Landing System (ILS) allows the 
aircraft to operate and automatically land despite difficult weather con-
ditions (e.g., restricted visibility). It is composed of ground-based signal 
transmitters and on-board receiving equipment. The ground-based 
equipment, located at the edges of the runway, comprises localizer and 

glide path radio transmitters and some marker beacons. On board, the 
receivers allow the emitted radio signals to be processed.

The glide and localizer signals are the ones of interest for perform-
ing an automatic landing. They both allow the position of the aircraft 
relative to the ideal trajectory for landing to be known. Thus, a guid-
ance control law can be designed so that the aircraft trajectory fol-
lows the centerline of the runway with a nominal descent path angle 
of = 3nomγ −  degrees. The lateral deviation is given by the localizer 
beam, while the longitudinal deviation is given by the glide beam. 
Figures 11 and 12 present the principles. Further details on autoland 
can be found in [13].

The aim is thus to track the glide and localizer signals and to perform 
the landing, via the addition of simple guidance outer loops which 
provide necessary inputs orders to the controller. The aircraft must 
hit the ground with a vertical speed [ ]= 2 3zV −  ft/s not further than 
500 meters after the runway threshold. Furthermore, if a lateral wind 
is blowing the aircraft must be able to have a final azimuth angle Ψ  
of 0° without being out of the axis of the runway during the process. 
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Figure 10 – Nonlinear Simulations with a 10 deg step on β , for various initial aircraft configurations and ±30% aerodynamic coefficient uncertainties, with the 
lateral multi-model controller ( )K̂ s .
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These challenging goals will be verified by running many simulations 
on the full nonlinear model with, as before, model uncertainties, dif-
ferent initial conditions and wind.

Guidance system

Thanks to an ILS model block the vertical and lateral shifts dZ and dY 
respectively between the actual position of the aircraft and the glide 
and localizer signals are recovered. PID controllers, which have as 
inputs dZ and dY, have been designed to provide the longitudinal and 
lateral controllers with the necessary values of cγ  and cφ  to cancel 
these shifts. The design is not detailed in the paper, since it really 
consists of classical design techniques (linearization of the plant from 
dZ and dY to the controller inputs cγ  and cφ , and PID design from 
frequency domain specifications). The nominal airspeed will be kept 
constant (V = 70 m/s). The general principle of the landing guidance 
+ control system is given in Figure 13. Note that the flare + decrab 
control system block will be described in the following subsection.

Flare and decrab phases

Just before landing, thanks to the ILS guidance detailed above, the air-
craft should fly with a fixed airspeed of –3° m/s, a flight path angle of 
–3° and be aligned with the runway. The objective of the flare control 
system, usually activated at 50 ft (15 m) above ground consists in gen-
erating an appropriate slope angle cγ  to be tracked so that the vertical 
speed at touchdown approaches 2.5  ft/s (0.75 m/s) and the aircraft 
hits the ground 400 m after the runway threshold. In order to do so, a 
corresponding trajectory ( )h x   is determined using some geometric 
considerations and cγ  is given in real time using the following relation:

( )( ) ( )
( ) ( ) ( )( )= =gr c

dh xh x t V t V t sin t
dx

γ−

(where grV  is the ground speed). The procedure is shown in Figure 14.

The decrab or align phase, usually activated at 30 ft above the run-
way, is aimed at setting the azimuth angle Ψ  to zero (relative to the 
azimuth angle of the runway) so that the fuselage is aligned with the 
runway axis at touchdown. This phase is essential in case of cross 
wind. It is realized by a PID controller that delivers the appropriate 
sideslip angle cβ  to be tracked as a function of Ψ.

Results

Complete landing simulations, including the flare and decrab phases, 
are successfully run for different initial conditions with regard to 
mass, center of gravity position, uncertainties and initial flight path 
angles. These are shown in Figure 15. Two lateral wind gusts are gen-
erated at 35 sec and 55 sec. Arriving above the runway, the azimuth 
angle is brought back to 0° using the rudder inputs (see Figure 15d). 
One can check that during this procedure the aircraft does not shift 
out of the runway when landing (see Figure 15a), and that the wings 
stay in an horizontal position (Figure 15c). Finally, after having prop-
erly recovered the glide reference slope, the flare procedure allows the 
aircraft to land at around 400 m after the threshold (Figure 15b), while 
bringing the flight path angle to the proper value allowing the vertical 
air speed (Figure 15e) to be kept within.

Table  2 summarizes the landing minimum, maximum and mean 
values for the final azimuth angles ψ , vertical speeds zV , pitch 
angles θ , pitch rates lX  and landing distances lX  obtained for every 
simulation, in order to check whether the landing requirements are 
met. The main difficult variable to control was the pitch rate q which 
is not positive but still near 0 deg/s. The other values are within an 
acceptable range with regard to the mean value and also the standard 
deviation is not higher than the limits, which shows that the whole 
method (controller synthesis, guidance laws and flare+decrab laws) 
is clearly robust to uncertainties and allows a proper landing to be 
performed under many flight conditions. There are a few extreme 
condition cases (especially for a maximum amount of uncertainties) 
for which the objectives are slightly exceeded, but this is not critical 
(the aircraft still lands safely).

Parameters min max mean standard 
deviation objectives 

Azimuth angle Ψ (deg) –1.06 0.59 0.01 0.32 0±1
Vertical speed Vz (ft/s) 0.88 4.46 2.33 0.82 2.5±1

Pitch angle θ (deg) –2.81 13.01 3.95 4.19 >0
Pitch rate q (deg/s) –0.73 0.25 –0.25 0.26 >0

Landing distance Xl (m) 190 567 393 115 0 < Xl < 500

Table 2 – Final minimum/maximum/mean values for the relevant landing 
parameters considering all of the simulations.
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Figure 13 – Guidance and control for landing scheme.
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Conclusion

Inspired by dynamic inversion techniques, an original methodology is 
proposed in this paper to design nonlinear controllers over possibly 
large flight envelopes. The procedure combines a partial feedback 
linearization of the plant with a fixed-structure multi-model H∞ design 
technique. Our methodology also includes a preliminary μ-based 
validation phase, during which worst-case models are obtained and 

then used to enrich the set of design models. Finally, a global non-
linear robustness analysis strategy is briefly sketched and the paper 
concludes with a detailed application of the methodology to a real-
istic aircraft landing problem. Future work will be devoted to further 
improvements of the design strategy and its application to a small 
autonomous aircraft, including flight tests 
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