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Optimization is used at all stages of aircraft design. In the early phases (also called 
preliminary or conceptual design) multicriteria Pareto optimization [11] based on 

heuristic laws is carried out. Conversely, in the late design phases, accurate structural 
and aerodynamics predictions are required to steer small changes of a baseline shape 
through mono-objective optimization. This article is devoted to the local and global 
optimization methods actually used during this second part of the design process.

Through discretization, parametrization, and numerical simulation, the design problem 
can be formulated mathematically as a finite-dimensional optimization. Hence a good 
knowledge of global and local optimization algorithms is important to aerodynamic 
design engineers. The classical algorithms which are currently used at Onera for shape 
design are presented. Besides, many local optimization algorithms require the gradient 
of the functions of interest with respect to the design parameters. The different ways to 
compute those derivatives - often called “sensitivities” - are also described. Numerous 
2D and 3D applications were dealt with at Onera using the methods described; they are 
presented in a companion article [14] and also briefly described in a course [1].

Introduction 

Numerical optimization aims at locating the minima of a regular func-
tion (called objective function) on a finite-dimensional design space, 
while satisfying a certain number of constraints (expressed as ine-
quality verified by the so-called constraint functions). More precisely, 
local optimization aims to find a local optimum in the region of an 
initial guess, whereas global optimization aims to find the global opti-
mum on the whole design space. These problems are, of course, the 
mathematical counterparts of mechanical optimization problems - like 
drag minimization of an aircraft or maximization of the total pressure 
recovery of a supersonic aircraft air intake - as soon as (a) a mesh 
and a numerical simulation tool are available; (b) the shape of the 
object to be optimized has been parametrized/a mesh deformation 
technique is available to propagate its deformation to the whole mesh; 
(c) the objective and constraints of the mathematical optimization 
problem have been expressed as functions of the geometry and state 
variables, which are usually the results of dedicated post-processing 
tools. 

Numerical optimization for aircraft design was introduced almost 
as soon as mature simulation codes appeared. The aerodynamic 

optimizations carried out by G.N. Van der Plaats at Nasa in the mid 
70’s illustrate this early interest in optimization [18]. At that time, 2D 
and simple 3D configurations were considered, simplex or descent 
methods were used and the gradients required by descent methods 
were estimated by the finite-differences. 

Since then, the framework of aerospace optimization has known at 
least three drastic extensions: (1) several global optimization methods 
have been defined and intensively used (evolutionary algorithm, par-
ticle swarm, ant colony, simulated annealing,...); (2) surrogate func-
tions (neural network, Kriging, polynomial regression, support vector 
machine,...) have been used for a part of the evaluations of the glo-
bal optimization methods leading to significant cost reductions; (3) 
adjoint vector and direct differentiation methods have been defined, 
studied and increasingly frequently used to compute the gradients 
necessary for descent algorithms. 

The next section presents the basic definitions and theorems. The 
third section is dedicated to global search methods. The fourth sec-
tion is devoted to descent methods. The fifth section describes the 
adjoint and direct methods that can efficiently compute the gradient 
of the functions of interest with respect to the design parameters. All 
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of the last three sections concentrate on the methods which were 
found to be among the most efficient and are actually used at Onera 
for aerodynamic design. 

Notations, mathematical problem and properties

Mathematical optimization problem 

In this first subsection, the classical notations of a mathematical fi-
nite-dimensional optimization problem are defined. Let α be the cur-
rent vector of the input space (design vector). Let us denote fn  its 
dimension. The vector α  is supposed to vary in  Dα (the design 
space), a parallelepiped of nf� . The objective function to minimize on 

nfDα ⊂ �  is denoted ( )J α . The constraints of the problem are sup-
posed to be formulated through cn  functions ( )jG α , that are nega-
tive at admissible design points. Only inequality constraints are consi-
dered here, as for most practical design problems an adequate choice 
of the design parameters enables us to avoid equality constraints. 
Obviously the local and global optimization problems read

Global [resp. local] optimum search
Seek for * Dαα ∈  such that *( ) ( )J Min J over Dαα α=  design 
space [resp. on *V

α
 neighborhood of *α ] 

and *[1, ] ( ) 0c jj n G α∀ ∈ ≤

In most common situations, the objective and constraint functions 
are at least continuous. In this presentation, for the sake of simplicity, 
the functions and state equations are supposed to have 1C  regularity 
and, in some sections, also 2C  regularity.

Optimization problem stemming from a numerical simulation 

In the framework of aircraft or turbomachinery design, the functions 
of interest depend on a distributed state field and geometrical va-
riables that are linked by a system of non-linear equations discretizing 
the governing equations of fluid dynamics. Let us note ( )S α , the 
coordinates of the surface mesh of a solid body. From any surface 
mesh, ( )S α , a volumic mesh ( )X α  is built. Both S  and X  are also 
supposed to have 1C  regularity. The Jacobian /dX dα  can always 
be estimated by finite differences and in some cases by the following 

product of Jacobians dX dX dS
d dS dα α

= . The state variables (aerodyna-

mic conservative variables) are noted W  (vector of size Wn ). State 
variables and mesh satisfy the discrete equations of fluid mechanics 
– a discrete form of Reynolds averaged Navier-Stokes (RaNS) equa-
tions, for example. In the framework of finite-difference/finite-volume 
methods, these equations read: ( , ) 0R W X = (in general, nonlinear 
set of Wn  equations). These equations are also supposed to have 1C
regularity with respect to (w.r.t.) their two vector arguments. It is also 
assumed that, all over the design space the flow is perfectly conver-
ged and the hypothesis of the implicit function theorem is satisfied 
( (( , ) / ( , ) 0 det( , ) 0i i i i i iW X R W X W X∀ = ≠ ) which defines the 
flow field W  as a 1C  function of the mesh X , and then as a 1C  re-
gular function of α over Dα . The discrete state equations may be 
rewritten ( ( ), ( )) 0R W Xα α = .

In case of an optimization problem associated with a framework of 
numerical simulation, the objective function is actually computed as  

( ) ( ( ), ( ))J J W Xα α α= . The constraint functions ( )jG α  have the 
same dependencies ( ) ( ( ), ( ))j jG G W Xα α α= . The definitions of 

global optimum search and local optimum search may be rewritten 
using J  and jG .

The Karush-Kuhn-Tucker condition 

For the unconstrained optimization of a 2C  function of fn
� , classi-

cal conditions of existence for minima read: 
	 • Local optimum located in *α  - *( ) 0J α∇ =  is a necessary 
condition. *( ) 0J α∇ =  and *( )H α  positive definite ( H  hessian 
matrix of J ) is a sufficient condition. 
	 • Global optimum located in *α  - *( ) 0J α∇ =  is a necessary 
condition. *( ) 0J α∇ =  and ( ) 0H α =  positive definite on Dα  is a 
sufficient condition. 

For a constrained problem on a finite size domain, the necessary 
condition for optimality is more complex to express. Actually, we first 
have to introduce more explicit notations for the parallelepiped design 
space Dα  : 

1, 1, 2, 2, 3, 3, , ,[ , ] [ , ] [ , ]... [ , ]
f fl u l u l u n l n uDα α α α α α α α α= × × ×

Then the domain bounds are rewritten as 2 fn  additional constraints 
1 1, 1( )

cn lG α α α+ = − , 2 1 1,( )
cn uG α α α+ = − , … 

                                                           ..., ,2
( )

f fc f
n n un n

G α α α
+

= − . 
For an optimization problem with inequality constraint the classical 
necessary conditions for optimality in *α  are the so-called “Karush-
Kuhn-Tucker” conditions: *α  is an admissible state

* * *( ) ( ) 0j j
j

J Gα λ α∇ + ∇ =∑
   

* *[1, 2 ] ( ) 0c f j jj n n Gλ α∀ ∈ + =

(the last proposition means that only the constraints attaining the limit 
value zero may have their gradient included in the linear combination 
of gradients) 

An illustration of the KKT condition for a 2D problem is presented by 
figure 1. The functions are:

2 2
1 2( ) 3J α α α= + , 2

1 1 2( ) 1G α α α= − +  , 2 1 2( ) 4 2G α α α= − − .

Figure 1 - KKT condition for a 2D example

Global search methods 

Stochastic methods

Stochastic optimization methods refer to non deterministic, direct 
search algorithms, and belong to the family of global search methods. 
As a direct search method, a stochastic algorithm is suited for optimi-
zation problems presenting non-differentiable or even non-continuous 
functions. However, the main advantage of stochastic methods, which 
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Surrogate model techniques

Artificial Neural Network (ANN)

Multi-layer perceptron is the most popular neural network architec-
ture, typically consisting in a hidden layer placed between the input 
and the output of the neural network. The number of neurons of the 
hidden layer ( )Nc  is a given parameter defining the degrees of free-
dom of the model. The internal connections between neurons of 
consecutive layers are characterized by unknown weights and an ac-

tivation function 
1( )

1 zz
e

Φ −=
+

. 

The ANN model is  0 0
1 1

ˆ ( )
fnNc

ANN j jk k j
j k

J B A A Bα Φ α
= =

 
= + +  

 
∑ ∑

where kα  is the k-th component of α . The weights A, B are esti-
mated with a gradient-based optimization procedure by solving the 
system for a database ( , ( )) [1, ]l l

dbJ l nα α ∈  ( fnlα ∈� ).  Because 
the weights are not unique, more than one network must be built in 
order to choose the one providing the best prediction. 

Model complexity increases with neuron number. Too few neurons 
can lead to under fitting. Too many neurons can contribute to over 
fitting, in which all training points are well fitted, but the fitting curve 
oscillates widely between these points.

Radial Basis Functions (RBF)

This surrogate model has been developed for the interpolation of scat-
tered multivariate data. It appears as a linear combination of N radial 
basis ( )rψ , of the form:

 1,

ˆ ( ) ( )i
RBF i i

i N
J w cα ψ α

=

= −∑
where iw  represents the weights of the linear combination, ic  is the 
ith of the N basis function centers. A strong simplification consists in 
imposing N to be equal to dbn , the number of data points and the cen-
ters i ic α= . This leads to the matrix equation w yΨ = , which gives 
the weights by inversion (Ψ  being the symmetric matrix defined by  

( )j i
ijΨ ψ α α= − ). The choice of the radial basis function can have 

an important effect, since Gaussian and inverse multi-quadric basis 
functions lead to a symmetric positive definite matrix. Estimating the 
other parameters, like a (see table 1), is an additional task.

Table 1 - Examples of radial basis functions

Thin plate spline 2( ) lnr r rψ =

Gaussian
2 2/2( ) r ar eψ −=

Multi-quadric 2 2 1/2( ) ( )r r aψ = +

Inverse multiquadric 2 2 1/2( ) ( )r r aψ −= +

have a common peculiarity of introducing some randomness in their 
search process, is their ability to deal with multimodal optimization 
problems since they (can) provide the global minimum for problems 
with several local minima. This interesting feature, directly inherited 
from the stochastic nature of their search process, is achieved at the 
price of a significant increase of the number of function evaluations 
during the optimization process, compared to local methods.

Stochastic methods cover a wide variety of algorithms. The most po-
pular stochastic algorithms which have been concretely applied to 
engineering design optimization problems are (not an exhaustive list): 
evolutionary algorithms, a category of methods which includes Ge-
netic Algorithms (GA) [5][6] and Differential Evolution (DE) [15][16] 
algorithms, the Simulated Annealing (SA) [7] method, the Particle 
Swarm Optimization (PSO) [8] method and the Ant Colony Optimiza-
tion technique [3]. Compared to a pure randomized search (which can 
be considered as a stochastic method), the previously cited methods 
are all grounded on some simple heuristics or more complex biologi-
cally or nature inspired metaheuristics which provide them with better 
performances, at least for some classes of optimization problems.

Over the past ten years, several applications of stochastic optimi-
zation methods to aerodynamic and multidisciplinary design opti-
mization problems have been performed at Onera [1][3]. Several of 
these applications relied on GADO [12], a GA developed at Rutgers 
University.

Surrogate based methods

Stochastic methods are effective search algorithms and can reach the 
optimal solution without getting trapped into local minima. However a 
large number of evaluations are usually required to obtain this optimal 
point. Typically, even the “greediest” (most efficient, possibly less 
robust) stochastic methods will require several thousand evaluations 
to provide an optimum design. The aerodynamic-related experiences 
conducted at Onera with such optimization techniques involved anal-
yses requiring less than 10 minutes (wall-clock) on super-computers. 
Such analysis time was achieved typically for 3D Euler simulation 
(in meshes of about 500.000 nodes) or 2D RANS simulation. This 
yielded a total time of one to two weeks for an optimization, while the 
target time for actual design applications in industry would be 1 day, 
or even half a day (one night). For many years now, alternative global 
search methods have been studied to reduce the CPU cost. One of 
their features is that they use surrogate model techniques in order to 
strongly reduce the number of CFD computations.

A first approach consists of building a sufficiently accurate model 
that presents the same optimal point than the objective function. Cur-
rent response surfaces based methods used for global optimization 
can be categorized on the basis of the type of response surface and 
method used to determine the new design points with which to enrich 
the surrogate model. A first approach is based on surrogate model 
construction from an initial sampling. The model’s accuracy depends 
on the sampling size and the location of the data points. So space 
filling techniques are better than the classical ones, because they co-
ver the design space in a uniform way. A second approach consists 
in using infill criteria. A first model is build from a small size initial 
sampling. The predictor and an estimate of the model’s error are used 
to determine new search points. Finally, a third approach consists of 
using a stochastic optimization algorithm and evaluating the different 
individuals of the population with the surrogate model.
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Kriging

While building this surrogate model, one assumes that the output 
function is the sum of a regression and a stochastic part. The last one 
is supposed to have zero mean and follow second order stationary 
process described by a correlation model ( , )dθℜ  (see table 2). 

Exponential ( , )
pd

d e θθ −ℜ =

Gaussian
2

( , ) dd e θθ −ℜ =

Spline cubic

0 1
d

a
ξ θ=
< <

2 2 3

3

(1 3 / ) (1 ) /
( , ) (1 ) / (1 ) 1

0

     0 a

                       a

                                            1

a a a
d a

ξ ξ ξ

θ ξ ξ
ξ

 − + + ≤ ≤


ℜ = − − ≤ ≤
 ≤

Table 2 - Examples of correlation models

The likelihood is maximised in order to estimate the unknown para-
meters θ  and p. In the case of ordinary kriging, the surrogate model 
relations are:

 1ˆ ˆ ˆ( ) ( 1 )T
OK sJ r Jα µ µ−= + −R    

1

1

1ˆ
1 1

T
s

T

Jµ
−

−=
R
R

,

where r  is the correlation vector between the predic-
tion point and the data points ( ( ,|| ||)i

ir θ α α=ℜ − ), 
1 2( ( ), ( ),... ( ))dbn

sJ J J Jα α α= is the vector of the function values 
of the data points, R  is the correlation matrix for the sample points 
( ( ,|| ||)ij i jθ α α=ℜ −R ), 1 is a vector of ones of size dbn . The esti-
mate of variance at unsampled points is given by:

( )1
2 2 1

1

1 1
( ) [1 ]

1 1

T
T

T

r
s r rα σ

−
−

−

−
= − +

R
R

R

Initial sampling techniques

An initial sampling is essential to obtain an accurate surrogate model, 
as all the parameters of the surrogate models are estimated from data 
points (location and function value). Those techniques can be divided 
into two categories:
	 • Classical samplings: Full factorial and Central Composite De-
sign (CCD) are the more basic forms of sampling. They present the 
drawback that the size of the sampling increases exponentially with 
the number of design variables. D-optimal design is suitable for higher 
dimensional problems. In the case of systematic error, an appropriate 
design must fill the design space rather concentrate on the bounda-
ries.
	 • Space filling samplings: Space filling samplings spread data 
sampling points throughout the entire design space. The most com-
mon methods are Orthogonal arrays, Latin Hypercube, Hammersley 
and uniform samplings. They cover the design space in a uniform way 
and in general are adapted to large scale problems. 

Adaptive sampling techniques

The use of an initial sampling leads to a globally accurate model. 
However, it is unlikely that the model is sufficiently accurate in the 
region of the predicted optimum. Hence infill points have to be defined 
to improve the model’s accuracy. The location of these new points is 

based on a criterion. Several classical criteria are presented in [16]. 
The most important is the Expected Improvement (EI). It consists of 
calculating the expected accuracy improvement, given the predictor   
Ĵ and the variance 2s :

 

min min
min

ˆ ˆ( ) ( )ˆ( ( )) 0
( ) ( )

0 0

J J J JJ J s s
EI s s

s

α αα Φ ϕ
α α

    − −
− + >    =     

 =

if

if

     

                                                                                

where Φ  and ϕ  are, respectively, the normal cumulative distribution 
function and probability density function. 

Acceleration of stochastic algorithms using surrogate models

The acceleration of a GA is obtained from the reduction of the num-
ber of exact function evaluations by the costly numerical simulation 
codes (CFD code in the case of aerodynamics). This involves a sur-
rogate model which provides more or less accurate evaluations of   

( )J α and ( )lG α , at negligible CPU cost. The use of a surrogate 
model instead of the numerical simulation code usually preserves the 
robustness of the complete optimization process. Actually, the dy-
namic improvement of the surrogate model is more appropriate for 
converging to the optimum value.

Several approaches have been defined to partly replace the numerical 
simulation codes by a global surrogate model. The sampling points 
are generally obtained after one or several generations of a classical 
stochastic research. Then, the model is updated online, from the new 
generated points, when the optimization process is going on. Due 
to the curse of dimensionality, the accuracy of the global surrogate 
models becomes more and more difficult to insure for high number 
of variables (high fn ). In order to overcome this drawback, another 
approach involving local surrogate models can be used during the 
search process. Finally, the two types of models (local and global) 
can be used to improve the speeding up of the optimization process

Local Search Using Derivatives – Descent Methods 

A descent method is an iterative method for the solution of a local 
optimization problem. Starting from an initial point, it attempts to 
converge to an optimum, using local information (most often function 
value and gradient) at the current point to compute the next iterate. 
In the following pages, we do not present the popular algorithms for 
1D minimization (dichotomy, golden number, polynomial interpola-
tion...) which are well described in many classical books [19]. On 
the contrary, we focus on the multiple dimension case, without and 
with constraints. The main point for each algorithm presentation is the 
definition of the descent direction. Obviously for optimization based 
on complex flow simulation, the search of the descent step is always 
based on a cheap algorithm like polynomial interpolation.

Descent methods for unconstrained optimization 

In this part, we focus on the search of an optimum of the objective 
function on the design space nfDα = � . The straight forward algo-
rithm (steepest descent) that simply goes down the direction opposite 
the gradient of J  is not described here, as it is known to often be 
inefficient. The conjugate gradient and BFGS methods are described. 
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Conjugate gradient methods 

The idea behind Conjugate gradient methods comes from the analysis 
of the behavior of the steepest descent for the specific case of posi-

tive definite quadratic forms ( 1( )
2

T TJ H bα α α α= + ).

In this case, the conditioning of the positive definite matrix H
strongly affects the robustness and convergence speed of the stee-
pest descent. To improve robustness, at step k Conjugate Gradient 
methods use a descent direction kd orthogonal to 1kd − in the sense 
of H - 1( ) 0k T kd Hd− =

1( )k k k kd J dα β −= −∇ +       
1

1 1

( ( ))
( )

k T k
k

k T k

J Hd
d Hd
αβ

−

− −

∇
= .

Conjugate gradient algorithm

0 Set k =  and 1 0d − = , an initial point 0α and a stopping tolerance ε  
 While  || ( ) ||kJ α ε∇ > do
	 Compute 1( )k k k kd J dα β −= −∇ +
	 Find *t by line search on ( ) ( )k kq t J tdα= +
	 Update current iterate 1 *k k kt dα α+ = + and set 1k k= +
 End while 

Two formulas have been proposed for computation of kβ
for extension to non quadratic cases. The first one is based 
on another formula of kβ  in the quadratic positive definite 
         2

1 2

|| ( ) ||
|| ( ) ||

k
k

k

J
J

αβ
α −

∇
=

∇
case                      which can be directly applied to a non-

quadratic function as it does not refer to matrix H any-
more. The second extension, proposed by Polak and Ribière 
in 1969, also reduces to the same algorithm in the quadratic 
positive definite case (see below, as then 1( ) ( ) 0k T kJ Jα α −∇ ∇ = ). 
It is known to lead to a more efficient algorithm for specific applica-
tions. 

2

1 2

|| ( ) ||
|| ( ) ||

k
k
FR k

J
J

αβ
α −

∇
=

∇   

2 1

1 2 1 2

|| ( ) || ( ) ( )
|| ( ) || || ( ) ||

k k T k
k
PR k k

J J J
J J

α α αβ
α α

−

− −

∇ ∇ ∇
= −

∇ ∇

A more efficient algorithm requires more information, in particular 
information about the second derivatives of the function to minimize. 
Newton methods have been devised for this reason.

Newton and quasi-Newton methods - Principle 

The classical Newton method is originally a method to find the 
roots of the equation ( ) 0z α =  by approximating the function z
by successive linear expansions. Starting from the current ite-
rate kα , substituting z  by its linear approximation leads to 

( ) ( ) ( ). (|| ||)k k k k k kz d z z d o dα α α+ = +∇ + . Neglecting the term   
(|| ||)ko d yields 1[ ( )] . ( )k k kd z zα α−= − ∇ and is used to calculate the 

next iterate 1k k kdα α+ = + . The same method can be used as an 
optimization algorithm, by solving the Karush-Kuhn-Tucker optimality 
condition. In this case, the function ( )z α becomes the gradient J∇
of the objective function J and the gradient z∇ , its Hessian 2J∇ . 
At each iteration k, the descent direction has to be computed by the 
formula 2 1[ ( )] . ( )k k kd J Jα α−= − ∇ ∇

Newton algorithm

0 Set k = , an initial point  0α and a stopping tolerance ε
While || ( ) ||kJ α ε∇ > do
	 Compute 2 1[ ( )] . ( )k k kd J Jα α−= − ∇ ∇
	 Update current iterate 1 *k k kt dα α+ = + and 1k k= +set
End while 

The important advantage of this method resides in its convergence in 
the region of the solution, which is superlinear in general and quadra-
tic (at each iteration, the number of exact digits is doubled) if J has 

3C regularity. 

Besides, the drawbacks of Newton’s method are also well-known: 
(1) the Hessian is required: in most engineering problems, an explicit 
form of the objective function is unavailable. The Hessian must be 
computed numerically which requires a large number of the objective 
function evaluations; (2) in high dimensional spaces, the solution of 
the linear system at each iteration is very CPU demanding; (3) Newton 
methods diverge violently far from the optimal point; (4) this algorithm 
converges on the closest stationary point, not necessarily the glo-
bal minimum. Quasi-Newton methods were developed to circumvent 
these drawbacks. 

Considering this list of drawbacks, the quasi-Newton realizes an im-
provement over the above Newton method based on two main ideas: 
	 • First, the stability problems of the method can be avoided by 
adding a line-search process in the algorithm. Actually, noting that 
the requirement  1( ) ( )k kJ Jα α+ <  enforces stability, the Newton in-
crement kd is considered as a direction, along which a line-search 
is performed to reduce the function ( ) ( )k kq t J tdα= + . It can be 
proved that the line-search is possible if and only if the Hessian of the 
objective function is positive definite. 
	 • Secondly, rather than computing the Hessian matrix, its inverse 
is approximated by a matrix H  which evolves during the iterations. 
This matrix can be chosen symmetric positive definite. An algorithm 
following this approach will be presented in the next section. Next 
algorithm describes the steps of a generic quasi-Newton algorithm. 

Generic quasi-Newton algorithm

0Set k = , an initial point 0α , a stopping tolerance ε , an initial ma-
trix 

0
H positive definite (generally, the identity matrix)

 While || ( ) ||kJ α ε∇ > do
	 Compute ( )

kk kd H J α= − ∇
	 Make a line search for ( ) ( )k kq t J tdα= +  initialized by 1t =
	 Update current iterate 1 *k k kt dα α+ = +
	 Compute new matrix 

1k
H

+

	 1k k= +set
End while 

BFGS method 

Let us now explain how the approximate invert of the Hessian, matrix    
k

H evolves during the iterations. The method presented here was 
introduced by C. Broyden, R. Fletcher, D. Goldfarb and D. Shanno. 
It is certainly the most popular quasi-Newton algorithm. The matrix 
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1k
H

+
is computed from 

k
H and some vectors attached to iteration k

and 1k +  computations according to following formulas 

1k k ks α α+= −
1( ) ( )k k ky J Jα α+= ∇ −∇

1 ( ) ( ) ( ) ( )1
( ) ( ) ( )

k k kk k T k k T k T k k k Tk k

k T k k T k k T k

s y H H y s y H y s sH H
y s y s y s

+  +
= − + + 

  

Constrained optimization 

Actually, most complex industrial problems lead to multi-dimensio-
nal constrained optimization. Two efficient algorithms for this task 
(feasible direction method and sequential quadratic programming) 
are described here. The presentation of classical methods that are 
seldom used for design in aeronautics (method of centers, sequential 
linear programming) can be found in [19]

Feasible direction method 

The goal of feasible direction method is to build a sequence of points
kα such that  1k k ktdα α+ = +  where the displacement along direc-

tion kd  leads to lower values of both, the objective and the active 
constraints (all constraints satisfying ( ) 0k

jG α = ). After kd  has 
been defined, the factor t  is determined by a mono-dimensional opti-
mization. Let us now derive the definition of kd . As before, the indexes 
are the ones of the iteration (k) of the algorithm. The vector kd  must 
satisfy ( ). 0k kJ dα∇ ≤  and / ( ) 0 ( ). 0.k k k

j jj G G dα α∀ = ∇ ≤

The tricky point is determining the vector kd  ensuring the best des-
cent. For a simple two dimensional problem ( 2fn = ) with one ac-
tive convex constraint 1G , it is easy to check that the minimization 
[ ( ). 0k kMin J dα∇ ≤  with ( ). 0 / ( ) 0k k k

j jG d j Gα α∇ ≤ ∀ = ] 
will lead to a vector d  that points towards inadmissible states (see 
figure 2). To tackle this issue, scalar factors jθ  are included in the 
problem [ ( ). 0 0 / ( ) 0k k k

j j j jG d j Gα θ θ α∇ + ≤ > ∀ = ]

Figure 2 - Principle of feasible direction search

One wants to link the value of jθ  with the one of ( ).kJ dα∇  Eventually, 
the search for the best direction for descent is reformulated as follows 

Maximize β  find kd  bounded
( ). 0k kJ dα β∇ + ≤  and

( ). 0 0 / ( ) 0k k k
j j j jG d j Gα θ β θ α∇ + ≤ > ∀ =

Obviously, if jG  is a linear constraint then 0jθ =  is suitable. For 
non linear constraints the simplest choice is jθ  = 1. More complex 
formulas are presented in [19]. 

Feasible direction method

0k =Set , an initial point 0α , a stopping tolerance ε
While KKT conditions not satisfied do
	 Find kd (bounded) which maximizes β  subject to
	 ( ). 0k kJ dα β∇ + ≤  and 
	 / ( ) 0 ( ). 0.k k k

j j jj G G dα α θ β∀ = ∇ + ≤
	 Make a line search for ( ) ( )k kq t J tdα= +
	 Update current iterate 1 *k k kt dα α+ = +  and set 1k k= +
End while 

Sequential Quadratic Programming (SQP)

In this method, an auxiliary function of the descent vector d  is intro-
duced. It is a quadratic approximation of  ( )J dα + . The heart of the 
algorithm reads 

              Minimize 
1( ) ( ) ( ).
2

k T kQ d J J d d B dα α= +∇ +

              Subject to ( ). ( ) 0.k k k
j j jG d Gα δ α∇ + ≤

where B  is a positive definite matrix equal to the identity matrix I 
at the first step and to an approximation of the hessian for the next 
iterations. Parameter jδ  is taken equal to 1 if the constraint is strictly 
respected ( ( ) 0.k

jG α ≤ ) and to a value in [0,1] if the current design 
point kα  violates constraint ( )jG α . See reference [19], for more 
information about hessian estimation, and monodimensional search 
after determination of d . 

Sequential quadratic programming

0k =Set , an initial point    , a stopping tolerance ε , an initial ap-
proximate Hessian matrix 0B
While KKT conditions not satisfied do
	 Find kd  which minimizes
	 ( ) ( ) ( ). 0.5k T kQ d J J d d B dα α= +∇ +
	 Subject to ( ). ( ) 0.k k k

j j jG d Gα δ α∇ + ≤
	 Update current iterate 1k k kdα α+ = +  and set 1k k= +
	 Build 1kB + , for example from BFGS formula
End while 

Sensitivity evaluations for descent methods 

This section will describe in some detail the main methods of gradient 
evaluation, firstly finite dif-ferences, followed by discrete versions 
of the direct and adjoint methods. A detailed bibliography of all of 
the methods presented and more material (continuous adjoint, exact 

0α

Usable-feasible
sector

Usable
sector

Feasible
sector

d

( )J α∇ °

1( )G α∇ °

( )J constα =

2 ( ) 0G α =

1( ) 0G α = 1α

2α

0
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duality, second-order derivatives, frozen turbulent-viscosity assump-
tion…) can be found in [12]. 

Finite differences

The application of finite differences to an entire flow solver is by far 
the simplest means of obtaining solution gradients, as it requires no 
modification of the solver itself. As a result it was one of the first 
sensitivity evaluation methods to be used. To start, the numerical fiow 
solution corresponding not only to α  but also to perturbed states   
α δα+ and possibly α δα−  is calculated. For the typical case of 
δα representing a geometry modification, this implies a mesh de-
formation ( )X α δα+  and a new flow solution on the modified 
mesh satisfying ( ( ), ( )) 0R W Xα δα α δα+ + = . An approximation 
of objective functions derivatives in the direction δα  can then be 
computed using a finite difference formula, such as the second-order 
accurate formula 

( ) ( ( ), ( )) ( ( ), ( ))
2

dJ J W X J W X
d
α α δα α δα α δα α δα
α δα

+ + − + +
=

                       
The entire matrix ( ( ) /dJ dα α , 1 ( ) /dG dα α …)  may be evaluated 
at a cost of 2 fn  flow solutions, or if a first-order difference is used 

1fn +  flow solutions, making the method impractical for large design 
spaces. Another serious disadvantage is that the choice of the step 
size δα  is critical to the accuracy of the result. The fundamental limi-
tations of finite differences have lead to the investigation of alternative 
means of gradient evaluation. 

The discrete direct method 

Under the assumption that the discrete residual R  is once conti-
nuously differentiable with respect to the flow field and mesh in a 
neighborhood of ( )W α and ( )X α , the discrete form of the govern-
ing equations ( , ) 0R W X =  may be differentiated with respect to 
each component of α  to give 

 	
i i

R dW R dX
W d X dα α

 ∂ ∂  = −  ∂ ∂   
	 (1)

This may be regarded as a linear system in unknowns 

i

dW
dα

, where             (or even ) may be evaluated by finite differences 

as

in the previous section, and the partial derivatives could be evaluated 
for example by hand. The dimension of the system is the number of 
degrees of freedom in the non-linear equations Wn , and it can be 
regarded as a linearization of those equations. Given the fn  solutions    

the derivatives of the functions of interest are

and 

where again the partial derivatives are in principle easy to evaluate, 
as J  is a known, explicit function of W  and X . Hence the 2 fn  
non-linear solutions required for second-order flow finite differences 
have been replaced by one non-linear and fn  linear solutions, all of 

dimension Wn , and the dependence on finite differences has been 
confined to the relatively cheap mesh update procedure. 

The discrete adjoint method

There are many ways to derive the discrete adjoint equations, the one 
given here is chosen for its similarity to the derivation of the conti-
nuous adjoint. Let the direct linearization (1) be premultiplied by an 
arbitrary line vector λ  of dimension  Wn , so that 

0.Wn T T

i i

R dW R dX
W d X d

λ λ λ
α α

 ∂ ∂ ∀ ∈ + =  ∂ ∂   
�

 
Adding this expression to last but one equation of previous subsec-
tion, 

,

Wn

i i i

T T

i i

dJ J dX J dW
d X d W d

R dW R dX
W d X d

λ
α α α

λ λ
α α

∂ ∂
∀ ∈ = +

∂ ∂

 ∂ ∂ + +   ∂ ∂   

�

Hence the term  may be eliminated by choosing the arbitrary 
vector λ  to satisfy  
                                  

          or (2)

the adjoint equation, a linear system in unknowns λ  the adjoint so-
lution, with respect to the objective function J . Given λ  the sensiti-
vities may be written 

.T

i i i

dJ J dX R dX
d X d X d

λ
α α α

 ∂ ∂
= +  ∂ ∂   

The critical point is that, because α  does not appear in (A), that 
linear system must only be solved once for each function to be diffe-
rentiated. Hence the full matrix ( ( ) /dJ dα α , 1 ( ) /dG dα α …) may 
be evaluated at a cost of 1 'cn+  linear system solutions of size Wn , 
substantially independent of fn (where 'cn  is the number of active 
constraints at a specific step of the optimization process ; only the 
gradients of those constraints are then needed).  

Robustness enhancement using recursive projection method

Both linearized and adjoint equations (equations (1) and (2)) are large 
sparse linear systems which can not be directly inverted for large size 
simulations. Most often an iterative procedure involving an approxi-
mate Jacobian ( )( )/ APPR W∂ ∂ is used. The corresponding algorithm 
reads (for the adjoint method):  

( )
( 1) ( ) ( )( )

TAPP T T
l l lR J R

W W W
λ λ λ+  ∂ ∂ ∂   − = − −    ∂ ∂ ∂    

Hence linear systems that appear in discrete gradient computation are 
very often solved by an iteration procedure of the form:
                               ( )( 1) ( ) ( ) 1   l l lx F x x M bΦ+ −= = + 	 (3)

Algorithm (3) aims at solving   Ax b= . The matrix 1 I M AΦ −= −  
represents the iteration matrix of the numerical scheme whereas M 
denotes a preconditioning matrix.

i

dX
dα i

R dX
X dα

 ∂
 ∂ 

i

dW
dα

i i i

dJ J dX J dW
d X d W dα α α

∂ ∂
= +
∂ ∂

k k k

i i i

dG G GdX dW
d X d W dα α α

∂ ∂
= +
∂ ∂

i

dW
dα

0T R J
W W

λ
 ∂ ∂  + =  ∂ ∂   

TTR J
W W

λ
 ∂ ∂  = −  ∂ ∂   
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Whether or not the iteration procedure converges to the solution 
1  x A b−=  depends upon the eigenvalues of Φ . Here, we follow the 

Recursive Projection Method (RPM) introduced by Shroff and Keller 
[15] for the stabilization of unstable recursive fixed point iteration pro-
cedures.

Suppose the iteration diverges thus implying that there are 1m ≥  ei-
genvalues of Φ with a modulus greater than unity:

 1| | ... | | 1mλ λ≥ ≥ ≥ . 
Define the subspace 1{ ,..., } mspan e e=P  spanned by the eigen-
vectors associated to these eigenvalues and ⊥=Q P  its orthogonal 
complement in N� . These subspaces form a direct sum in N� , 
hence every vector can be decomposed in a unique way as the sum

,      , :N
P Q P Qx x x x x x∀ ∈ ∃ ∈ ∈ = +P Q�  .

The orthogonal projectors onto the subspaces P  and Q  are denoted 
P  and Q  respectively. Let NV ∈�  be a matrix whose columns 
constitute an orthonormal basis for P , then the projectors are defined 
by , –TVV I P= =P Q  where I denotes the identity matrix and ex-
ponent T is the transpose operator. Note that since P  is an invariant 
subspace of Φ  we have 0Q PΦ = . Then, the RPM iteration reads

    

( )
( )( ) ( )

( 1) ( )

( 1) ( ) 1 ( ) ( )

( 1) ( 1) ( 1)

( )                    

 

    

  

l l
Q

l l l l
P P P

l l l
Q P

x QF x

x x I P P PF x x

x x x

Φ

+

+ −

+ + +

=

= + − −

= +

4

According to Shroff and Keller, the RPM iteration converges even 
when the original iteration (3) diverges [15]. The implementation of 
the algorithm (4) requires the construction of the projectors P and Q 
and hence the evaluation of the orthonormal basis. 

The method for computing V  is the following: Consider the vec-
tor ( 1)

1
l k

Qv x∆ − +=  where  ( ) ( 1) ( )j j j
Q Q Qx x x∆ += −  and the ma-

trix Â Q QΦ= . Define the Krylov subspace of dimension k 
generated by 1v  and 1

1, 1 1: { , ..., }k
kÂ span v Âv Â v−=K  . Let 

1
1, 1 1( , ..., ) k

kK v Âv Â v−=  a matrix whose columns span the subs-
pace kK . Compute the QR  factorization k k kK Q R=  where the 
columns of kQ  form an orthonormal basis of kK  and where the 
absolute values of the diagonal elements of the upper triangular matrix 

kR  are sorted in a decreasing order.

If the algorithm (3) fails to converge, vectors for V  are chosen on 
the basis of the following condition. For the largest 1 1j k≤ ≤ −  such 
that

,

1, 1

j j

j j

R
R

κ
+ +

>

the first j  columns of kQ  are added to V . The parameter κ  stands 
for the Krylov acceptance ratio and its inverse represents a bound for 
the residual of the computed eigenspace of Â.

Adjoint method for aeroelasticity

When gradient computation is carried out in an aeroelastic framework, 
the state variables can be divided into two parts: W  and D , where   
W stands for the aerodynamic conservative variables at the center 
of the cells of the volume mesh ( )X α  and D  represents the struc-
tural displacements of the nodes of the structural model associated 

with the solid body considered. In addition, a new mesh ( )Z α   must 
be introduced for the structural model. The structural mesh can de-
pend a priori on the vector of shape parameters. However, if the solid 
body planform remains unchanged when α  varies within the design 
space, this dependency vanishes. The state variables and meshes 
satisfy the discrete equations of both fluid mechanics ( aR ) and struc-
tural mechanics ( sR ),

( , , ( ), ( )) 0
( , , ( ), ( )) 0

a

s

R W D X Z
R W D X Z

α α
α α

=
 =

.

In general, aR is a set of nonlinear equations (of size an ) but sR is 
a set of linear equations (of size sn ). These equations are coupled 
through the aerodynamic loads sL  which stimulate the structural 
model:

( , , , ),s sL L W D X Z=
 

and through aD  the displacements of which are transmitted 
backwards to the volume mesh so as to follow the structural displa-
cements (this can be done in a two-step manner using surface mesh 
transfer intermediately):

( , ).a aD D D Z=
 

The current volume mesh ( )X α  is actually a function of the initial 
volume mesh 0 ( )X α  on which the structural displacements 
are transferred, and which, incidentally, is actually directly controlled 
by α ,

0( , ( , )).aX X X D D Z=
 

These couplings introduce a number of issues regarding load transfer 
consistency and conservativeness first, and mesh deformation se-
cond, which have been extensively dealt with in literature. The reader 
can, for instance, refer to the articles of Farhat et al., Maman et al., 
Arian and Smith et al1.

Assuming that this coupled system has 1C  regularity too with respect 
to its four vector arguments, that ( )W α  has ( )D α  regularity, and 
that,
 

( ( ), ( ), ( ), ( )) 0
,

( ( ), ( ), ( ), ( )) 0

/ /
det ( ( ), ( ), ( ), ( )) 0

/ /

a i i i i

s i i i i

a a
i i i i

s s

R W D X Z
R W D X Z

R W R D
W D X Z

R W R D

α α α α
α α α α

α α α α

=
 =

 ∂ ∂ ∂ ∂  
≠  ∂ ∂ ∂ ∂  

the implicit function theorem allows us to define W  and D  as 1C  
functions of X  and Z  in a neighborhood of ( )iX α  and ( )iZ α , and 
therefore thanks to the assumed regularity of ( )X α  and ( )Z α , as   
functions of α  in a neighborhood of iα . We suppose this property to 
be true on the entire design domain Dα , so that we may use ( )W α  
and ( )D α  notation, and rewrite the discrete coupled equations

 

( ( ), ( ), ( ), ( )) 0
.

( ( ), ( ), ( ), ( )) 0
a

s

R W D X Z
R W D X Z

α α α α
α α α α

=
 =

We assume that the discrete residual ( , )a sR R  is 1C  differentiable 
with respect to the state variables ( , )W D  and to the meshes ( , )X Z  
in a neighborhood of ( ( ), ( ))i iW Dα α  and ( ( ), ( ))i iX Zα α , so that 
the discrete form of the discrete coupled equations can be differenti-
ated with respect to α:

  1 A detailed bibliography including these authors can be found in [9]
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a a a a

s s s s

R R R RdW dD dX dZ
W d D d X d Z d
R R R RdD dW dX dZ
D d W d X d Z d

α α α α

α α α α

∂ ∂ ∂ ∂ = − − −∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ = − − −
 ∂ ∂ ∂ ∂

Given the fn  solutions ( / , / )dW d dD dα α  of the linear coupled 
system above, the derivatives of J , are:

 

0

0

.a a

a

dX dD dDdJ J dW J X X dD dZ
d W d X X d D dD d dZ dα α α α α

 ∂ ∂ ∂ ∂  = + + +  ∂ ∂ ∂ ∂   

As for the aerodynamic adjoint method, the discrete coupled equa-
tions are multiplied by two arbitrary line vectors T

aΛ (of size an ) and  
T
sΛ (of size sn ), so that:

 
( ) ( )

0
,

0

, , .a s

T T T Ta a a a
a a a a

T T T Ts s s s
s s s s

n n
a s

R R R RdW dD dX dZ
W d D d X d Z d
R R R RdD dW dX dZ
D d W d X d Z d

α α α α

α α α α

∂ ∂ ∂ ∂Λ + Λ + Λ + Λ = ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂Λ + Λ + Λ + Λ =
 ∂ ∂ ∂ ∂

∀ Λ Λ ∈ � �

Adding both these equations to the derivatives of J , 

( ) ( )

0

0

,

, , ,a s

T Ta s
a s

T Ta a s
a s

a

a

a

T T Ta s a s
a s s

a

n n
a s

T Ta s
a s

R RdJ J dW
d W W W d

dD R RX dDA
D dD D D d

dX dDX X dZA A
X d D dZ d

R R dD RX dZ
Z X D dZ Z d

R RJA
X X X

α α

α

α α

α

∂ ∂∂ = + Λ + Λ ∂ ∂ ∂ 
 ∂ ∂∂

+ + Λ + Λ ∂ ∂ ∂ 
∂ ∂

+ +
∂ ∂

 ∂ ∂ ∂∂
+ Λ + Λ + Λ ∂ ∂ ∂ ∂ 

∀ Λ Λ ∈

∂ ∂∂ = + Λ + Λ ∂ ∂ ∂
with

� �

.


The so-called adjoint vectors aΛ  and sΛ  are chosen such that each 
term containing /dW dα or /dD dα  disappears from the expres-
sion of /dJ dα . This leads to the adjoint coupled equations:

T TT
a s

a s

T T
s a s

s
a

T

a a a
a

a

R RJ
W W W

R dD RX J
X D dD D X

R dD RX
X D dD D

 ∂ ∂∂    Λ = − − Λ     ∂ ∂ ∂    

 ∂ ∂∂ ∂  + Λ = −   ∂ ∂ ∂ ∂  


 ∂ ∂∂ − + Λ  ∂ ∂ ∂ 

Once the adjoint vectors aΛ  and sΛ  have been solved from the 
linear coupled system above, the derivatives of J  are:

0

0

.

T Ta s
a s

T Ta s a
a s

a

T T Ta s a s
a s s

a

R R dXdJ J X
d X X X X d

R R dDJ X dZ
X X X D dZ d

R R dD RX dZ
Z X D dZ Z d

α α

α

α

∂ ∂∂ ∂ = + Λ + Λ ∂ ∂ ∂ ∂ 
∂ ∂∂ ∂ + + Λ + Λ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂∂
+ Λ + Λ + Λ ∂ ∂ ∂ ∂ 

Function J  has been assumed to depend only on the aerodynamic 
variables W  and X . This does not reduce the generality of the 
method; indeed, one can easily introduce a direct dependence of J
on D  and Z , as long as the partial derivatives /J D∂ ∂  and /J Z∂ ∂  
are available. 

The interested reader is invited to consult the classical literature on 
the subject, including in particular the articles of Sobieszcsanski-So-
bieski, Farhat, Maute, Martins and Haftka1.

Conclusion  

Optimization in aeronautics has been a very active topic since the 
70’s. Several engineering disciplines, like structure and aerodyna-
mics, have benefited from the progress accomplished in this field, 
at the crossroad of mathematics, numerics and computer science. 
The purpose of this article was not to present all of the methods that 
can be used for design in aeronautics, but only those that were found 
efficient and actually used at Onera for design with a special focus on 
aerodynamic design applications [14].

Huge advances have been made during the last twenty years, in parti-
cular in the fields of global optimization (see § Global search methods) 
and gradient computation (see § Sensitivity evaluations for descent 
methods), paving the way for the first concrete and conclusive ap-
plications of these methods for solving design problems, capturing, 
at least partially, the complexity of reallife industrial design problems. 
Future advances may concern the efficient coupling of flow analysis 
and shape optimization, also of global and local optimization algo-
rithms 

  1 A detailed bibliography including these authors can be found in [9]
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Acronyms 
ANN	 (Artificial Neural Network)
BFGS	 (Broyden-Fletcher-Goldfarb-Shanno method)
CCD	 (Central Composite Design)
CFD	 (Computational Fluid Dynamics)
CPU	 (Central Processing Unit)
EI	 (Expected Improvement)
GA	 (Genetic Algorithm)
PSO	 (Particle Swarm Optimization) 
RaNS	 (Reynolds averaged Navier-Stokes)
RPM	 (Recursive Projection Method)
SA	 (Simulated Annealing)
SQP	 (Sequential Quadratic Programming)
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