
Issue 15 - September 2020 - A Survey on Chronicles and Other Behaviour Detection Techniques
	 AL15-02	 1

Artificial Intelligence and Decision Making

A Survey on Chronicles 
and other Behavior 

Detection Techniques

Until recently, the processing of a rapidly changing dataflow used to be very 
costly in terms of computation duration. Thus, the extraction of semantic 

information, requiring complex correlations of events in a temporal pattern, was 
not possible in real time. Computer performance has sufficiently improved to 
now allow such processing to take place, with, obviously, a very broad range of 
interesting applications. Various underlying formal frameworks exist to perform this 
kind of analysis, and this paper is aimed at reviewing the various (families of) such 
formalisms, and at comparing them according to a series of general features. It also 
provides a detailed example of the kind of analysis that can be performed with these 
formalisms in aeronautics, where the recent evolution of air traffic management, the 
potential introduction of unmanned aircraft in general air traffic, and various other recent 
trends form a general context pointing toward a much wider use of dataflow exchanges.
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Introduction

Over the past years, the handling of rapidly changing dataflows at a 
semantic level has attracted a lot of interest. Indeed, while the seman-
tic processing of a large, fast-pace flow of data used to be too costly 
in terms of computation, thus obliging to a choice between online 
syntactic processing and offline semantic processing, computer per-
formance now allows semantic information to be extracted on-the-fly 
from a large dataflow.

This is, of course, a quite interesting feature in a very broad spectrum 
of fields, as is evidenced by many recent applications of artificial 
intelligence. Aeronautics is a particularly interesting field for these 
dataflow extraction techniques: indeed, while exchanges between 
pilots and control used to rely mostly on radio, nowadays a large 
flow of data is exchanged between them. The potential introduction of 
unmanned aircraft and the recent evolution of air traffic management 
also point toward a large flow of data exchanges, to which agents 
of the system have partial access (each having different sensors to 
track the underlying events), and the introduction of reasoning and 
semantic processing of these events is a valuable assistance for the 
pilots and controllers involved.

Traditionally, information extraction from dataflows has been roughly 
classified into two families of approaches:

•	 on the one hand, information flow processing (IFP): these ap-
proaches focus on efficiently handling dataflows by treating 
incoming information on the fly and providing extracted infor-
mation in real time;

•	 on the other hand, knowledge representation and reasoning 
(KRR): these approaches focus on complex reasoning abilities, 
but perform well mostly on data that changes in low volumes 
at low frequency.

Stream Reasoning is a multidisciplinary approach to this issue, which 
encompasses both families and is aimed at combining their respec-
tive benefits by enabling complex reasoning about rapidly-changing 
information flows.

Knowledge-representation and reasoning approaches are based on 
temporal logic, belief revision, changing vocabularies and evolving 
ontologies. They find lots of applications within the context of the 
Semantic Web and allow very complex reasoning tasks. However, 
there are two drawbacks with regard to these for handling rapidly-
changing dataflows. First, the tools involved generally rely on strong 
combinatorics, and are often not able to scale up to high-frequency 
dataflows. Second, typical Semantic Web architectures generally 
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crawl and cache information, which is not a robust approach in the 
case of high-frequency dataflows, since the crawled and cached 
information would become obsolete too quickly.

Information flow processing is rooted in the so-called Data Stream 
Management Systems (DSMS), which historically stem from Data 
Base Management Systems (DBMS). As their name indicates, 
DBMS are intended to manage databases; i.e., persistent data, where 
updates are infrequent and where information is extracted through 
user-made queries. DSMS try to accommodate, within this transient 
framework, continuously updating data: instead of handling queries 
that are run just once and of returning a comprehensive answer, 
DMSM continuously run standing queries and return partial answers 
that are updated on the fly as new data arrives.

Even if they do not seem to have much in common (DBMS handle 
persistent data by executing ad-hoc queries just once, while DSMS 
handle transient data by continuously running generic queries), both 
approaches share a common background and, in particular, process 
data through transformations based on a relational algebra (e.g., 
selection, aggregation, joining, etc.). Thus, DSMS can be described, 
in general, as having very good performance in terms of efficiency, 
but a rather limited expressivity.

To overcome this limitation, other approaches have been developed in 
various communities, in which a notion of "distributed system" existed. 
These approaches have a common characteristic, which is that they 
consider incoming information in the dataflow not per se, but rather 
as a notification of events occurring in the real world, and are aimed 
at reconstructing the higher-level behavior of which these events are a 
trace, mostly through filtering and combinations. In this sense, they are 
pretty much inspired by the publish-subscribe model that is commonly 
found in distributed systems: on top of the usual publish-subscribe 
system, where events are considered separately from the others, they 
build a more expressive subscription language that allows complex 
event patterns involving (much) more than one event to be considered. 
These approaches are referred to by the generic designation of com-
plex event processing (CEP). While traditionally classified as part of 
the IFP family, some CEP techniques have reached reasoning abilities 
that are comparable to some KRR approaches.

CEP techniques, due to the variety of applications and associated 
specific needs, exist in a broad variety. This paper is aimed at com-
paring several CEP frameworks, namely:

•	 Event Calculus: an approach based on situation calculus, but 
dealing with local rather than global events;

•	 ETALIS: an approach based on logical programming and aimed 
at combining temporal properties with database querying;

•	 Chronicles: a generic term encompassing various systems 
based on event signatures;

•	 Other approaches that are not strictly CEP, but rather based on 
active databases, DSMS, or KRR.

This paper is organized as follows. First of all, we describe the various 
important features that can be used to distinguish the various formal 
frameworks that exist in the CEP community. Then, we discuss the 
compared merits of the techniques (or technique families) described 
above, according to these features. We then illustrate the interest of the 
approach within an aeronautic context, considering an example. Finally, 
we conclude this survey by providing a brief overview of the various 
domains where CEP-related techniques have been used with success.

Important features

As stated above, there are many different approaches to stream rea-
soning and they fulfil the various needs of a broad variety of appli-
cations. This section lists the various features that can be used as 
distinctive criteria for different stream-reasoning approaches.

Language-related features

Any stream-reasoning technique relies upon a formal language that 
is used to describe the behaviors to be identified. As is frequently the 
case, expressivity generally results from a trade-off:

•	 on the one hand, high expressivity is desirable in order to be 
able to finely describe the behaviors to be detected, and to 
distinguish behaviors that have very similar traces in terms of 
observable events;

•	 on the other hand, higher expressivity inevitably implies a more 
complex recognition process, and thus less-efficient computation.

In [33] (Section 3.8), Cugola and Margara list operators that are com-
monly found in the constructs of most CEP frameworks, notably:

•	 Sequence: two patterns following each other, generally with the 
sole condition that the first pattern must have been completely 
recognized before the recognition of the second one starts 
(some frameworks add that the ending point of the first one 
must coincide strictly with the starting point of the second one);

•	 Disjunction: either one of two patterns must be present; when 
dealing with a rich event (with valued attributes), this can lead 
to complications because, unless both patterns in the disjunc-
tion contain the same event attributes, it may no longer be pos-
sible to reason about these attributes;

•	 Conjunction: it is worth noting that the conjunction cannot be 
reduced with the two previous operators, since when the el-
ements of conjunction are not elementary events, but rather 
involve more than one event, conjunction allows intertwined 
behavior which sequences do not;

•	 Iteration, which can be parameterized by the number of itera-
tions (which is a parameter relating to the structure of the be-
havior);

•	 Negation: this operator is generally tricky when dealing with 
a flow of information. Indeed, there has to be some form of 
boundary on the part of the flow, in which a negation must be 
detected in order to be able to yield effective detections. Oth-
erwise, there will always be a possibility that a later event may 
trigger the recognition of the negated behavior, and hence in-
validate the recognition of its negation. Therefore, many authors 
prefer to refer to absence (implicitly on a bounded support) 
rather than negation;

•	 Temporal constraints: while many other temporal logics allow 
interval properties (e.g., Duration Calculus in [26]) to be ex-
pressed, the formalism of Allen’s 13 relations [1] is a gener-
ally accepted reference in the domain of CEP (see [5, 51, 69]), 
since it exhaustively considers all possible arrangements be-
tween two time intervals;

•	 Parameter value constraints: the parameters here are param-
eters of elementary events or of higher-order behaviors.

In addition to the extent to which each of these operators can be 
expressed, another trait related to the underlying language is the 
question of whether an open or closed syntax should be used; i.e., 
whether to allow meaningless formulae or not.
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Besides expressivity, an important not-unrelated issue in stream rea-
soning is how behaviors to be detected can be extracted from experts 
having an operational knowledge of the behaviors of interest. Within 
this context, a concise and readable language, where syntactical 
changes are easily associated with their semantics, is clearly desir-
able, but again there is a trade-off here, since a very-high readability 
could lead to an extreme oversimplification of the language, and thus 
to reduced expressivity.

Recognition-related features

The amount of information contained in recognition is also an important 
feature, as since recognitions are, in principle, done with a purpose, 
which implies processing that may require being able to return to the 
triggering events in the flow. In this sense, recognition information can 
constitute evidence of the recognition, and the nature of this evidence 
may depend on the application: for example, in some applications, one 
may be only interested in knowing that the behavior of interest occurred 
at least once. In other applications, e.g., telecommunication network 
monitoring [40], a single occurrence of a given behavior is generally 
not significant, whereas its repetition is. When dealing with security and 
safety, it is generally necessary to investigate all instances of hazardous 
behaviors, and not just any. However, another trade-off arises, since 
the identification of multiple recognitions requires keeping track of all 
possible recognition starts, and of all intermediate recognitions, thus 
having an adverse effect with regard to the efficiency of the recognition.

Thus, two main issues arise with regard to recognition: historization 
and multiplicity.

As explained above, historization is a feature where events are considered 
as a trace of the behaviors that have been recognized, and recognitions 
contain the necessary information to return to the events that triggered it.

As to multiplicity, a classification of recognition contexts with respect 
to this issue has been proposed in [33]:

•	 The "recent" context: only the most recent occurrence of an 
event initiating a recognition is kept (each pattern to be recog-
nized is associated with a unique instance of its initiating event 
at any point during the processing of the flow);

•	 The "chronicle" context: occurrences are managed in a FIFO 
way, with the oldest occurrences being used first and discarded 
as soon as they have been used;

•	 The "cumulative" context: all event occurrences are stored 
but, whenever a pattern is recognized, all event occurrences 
involved are discarded;

•	 The "continuous" context: all events are stored and can always 
be used.

Flow-related features

An important feature of any stream-reasoning framework is the way 
in which it deals with the event flow, and, indeed, which assumptions 
it makes with regard to it, which determine what kinds of flows it is 
able to handle. An ideal flow would be a unique flow, totally and strictly 
ordered: while this kind of flow would probably be handled effectively 
by most recognition algorithms, it may be possible, depending on the 
context of the study, to consider other kinds of flows, and notably:

•	 Distributed flows: the flow may not be centralized, but rather be 
made of several distributed subflows – in this case, the order-
ing between events provided by different subflows could be a 

problem for behavior patterns depending on event order (e.g., 
sequence), especially if they are not timestamped by a syn-
chronous clocka;

•	 Partially-ordered flows: events in the flow are not totally or-
dered, which is a generalization of the previous case and leads 
to the same problems;

•	 Non-strictly ordered flows: events may arise simultaneously; 
this is a case that may have unexpected side-effects in situa-
tions where event order is important for the behavior;

•	 Delayed flow: events may arise late, or their occurrence date 
may be corrected a posteriori (which happens, e.g., in cases 
where events may be revised following the failure of a trans-
action) – in general, the date on which the event occurs dif-
fers from the date on which it is entered into the reasoning 
system, which requires specific mechanisms to handle events 
properly.

In addition, another important aspect of the flow is the time model that 
it uses. Time is generally linear, but can be discrete, either with a fixed 
pace or with variable granularity, or continuous. The time model may 
also not exist: this is the case in most DSMS, where there is no time 
model and events are considered only with an order – but this has, of 
course, a negative impact on the expressivity of the language.

Uncertainty-related features

In real cases, lots of uncertainties appear naturally:
•	 With regard to event dates (or order);
•	 With regard to event attributes;
•	 With regard to the events themselves (whether they really oc-

curred or not);
•	 With regard to behavior parameters;
•	 With regard to behavior structures.

Depending on the uncertainties considered, specific mechanisms 
have to be considered, either in the description language or in the 
recognition algorithm itself.

Self-reference features

Recognitions can be self-referent and create events at various points 
of the recognition process. The most frequent occurrence of this fea-
ture is when the recognition of a behavior triggers a new event that is 
added to the flow. This yields many issues, since such systems are 
intrusive: in particular, the flow depends on the monitored activities. 
In extreme cases, recognitions may also have an effect on the moni-
tored activities, where new activities to be recognized are dynamically 
added into the flow, leading to a retroaction loop that is difficult to 
manage, both theoretically and practically.

Event Calculus

Event Calculus (EC) is a formal framework allowing events and actions 
to be represented and reasoned upon in the form of an executable 
logical program. It is aimed at determining time-evolved values for 
logical propositions (the so-called fluents).

EC was introduced by Kowalski and Sergot in [50]. Its name is 
derived from Situation Calculus; the difference between these two 
frameworks being that it deals with local, rather than global, events: 
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the purpose of this change is to avoid the frame problem for the sake 
of efficiency. EC claims to provide a formal analysis of the concepts 
involved; i.e., events and actions. It can be expressed using Horn 
clauses, to which, consistently with the logical programming founda-
tion of the approach, a notion of negation by failure is added (thus 
introducing a closed-world assumption).

The founding principles of EC are the following:
•	 Events can be processed in any order, not necessarily in re-

lationship with their order of occurrence, since the past and 
future are considered symmetrically;

•	 Events can be concurrent and are not necessarily punctual (an 
elementary event can have a duration);

•	 Updates are possible, but only if they are additive: they can add 
information but never remove information;

•	 The dates of events are not particularly relevant, whereas their 
relative order is.

Many EC dialects exist, some of which allow the handling of delayed 
actions or continuous state changes, such as, e.g. [58, 57], an 
interval-based work built with reaction rules; these approaches are 
catalogued in [54].

An interesting modular approach can be found in the EC dialect 
developed by Artikis et al.: this dialect allows a low-level event to be 
composed into high-level complex behaviors, using the predicates 
found in Table 1 to express temporal constraints, with an underlying 
linear time model. These predicates are defined relying upon axioms, 
some of which may be independent from the application domain. The 
formalism is quite expressive, and allows constraints, whether tem-
poral or not, to be expressed and contains a form of absence, in the 
form of a situation where a given behavior must not occur within a 
certain time interval [9]. High-level behaviors can be defined using 
punctual events (through predicate happensAt) or fluents, initially 
using predicates such as initiatedAt, holdsFor, etc.

Predicate Intuitive meaning
happensAt(E, T ) Event E occurs at time T.
initially(F = V ) Fluent F has value V at time 0.
holdsAt(F = V, T ) Fluent F has value V at time T .
holdsFor(F = V, I ) I is the list of all maximum time 

intervals over which F has value V.
initiatedAt(F = V, T ) A time interval where F has value V 

starts at time T.
terminatedAt(F = V, T ) A time interval where F has value V 

ends at time T.
union_all(L, I ) I is the list of all maximum time 

intervals resulting from the union of 
all intervals in List L.

intersect_all(L, I ) I is the list of all maximum time 
intervals resulting from the 
intersection of all intervals in List L.

relative_complement_all(I', L, I ) I is list lt of maximum time intervals 
minus each set of intervals in List L.

Table 1 - Main predicates of Event Calculus

The issue of behavior extraction and writing is studied in [13, 8]. 
Indeed, writing activities in the EC framework is tedious and error-
prone, hence the idea of developing an automated process to gener-
ate definitions from temporal data. Thus, the authors use a learning 
method based on abductions and inductions to infer the behaviors to 
be recognized.

As explained in the introduction to this article, a major issue for stream 
reasoning is whether behaviors can be recognized or not in real time. 
The algorithm in this EC dialect uses a system query method: the rea-
soning is not performed gradually, but rather on demand, whenever a 
high-level activity is queried [10]. Thus, in order to perform an online 
analysis, it is necessary to constantly make queries: without a cache, 
this implies starting computations over again each time. Moreover, 
one of the principles of AC is that the order in which events occur fur-
ther increases the complexity of the computation. In [28], Chittaro et 
al. introduce a version of EC called Cached Event Calculus (CEC), an 
implementation managing a cache memory to reduce the complexity 
of the process. However, CEC has no pre-emption mechanism and 
it accepts the processing of events with an earlier date than already 
processed events.

Therefore, recognition times increase gradually as low-level events 
occur, and after the computation becomes too time-expensive to keep 
up in real time. Artikis et al. attempted to address this issue in [12], 
where they introduce RTEC (Run-Time reasoning Event Calculus), an 
efficient YAProlog

1 implementation of their EC. Their program is also 
based on successive queries, with a cache memory preserving maxi-
mum intervals computed for the HoldsFor predicates of each fluent.

In addition, in order to address uncertainty, several stochastic 
approaches of EC have been developed. Artikis et al. extended the 
formalism of EC in [65] by means of Markov logical networks (MLN) 
[38], combining first-order logic with the probabilistic semantics of 
Markov networks. In [64] they also provided another extension, this 
time to probabilistic logical programming, using Prob-Log [49]. This 
way, they addressed the issue of incorrect low-level event detections 
by adding confidence indices to the events in the flow. The uncertainty 
here is limited to event uncertainty: in particular, it is not possible to 
handle incompletely specified behaviors. Moreover, the authors admit 
that online recognition is not possible in this formalism, which is cor-
roborated in a recent work by Rincé et al. [63], who showed that, for 
a whole class of problems, the local search algorithms necessary in 
MLN and ProbLog perform poorly due to the structural characteristics 
of the problem.

Another approach for uncertainty handling is introduced in [14]. It is 
orthogonal to that in [64] in the sense that they may be combined. It 
relies upon the use of various event sources to determine their likeli-
hood, with an auto-adaptation system based on the behavior recogni-
tion process itself: complex behavior definitions are written to identify 
the uncertainty domains and react accordingly: when the uncertainty 
becomes significant, the system may ignore events over a certain 
time interval, or even momentarily discard an event source. In [15], 
the authors add crowdsourcing to this framework, in order to make 
decisions when discrepancies between sources become significant.

ETALIS

Event-driven Transaction Logic Inference System (ETALIS)2 [5, 2] is 
a CEP language, the syntax and semantics of which allow reason-
ing simultaneously on temporal assertions and on stable or evolving 
knowledge (rules, facts, ontologies, encyclopedic data, etc.). Its pro-
cessing engine allows behaviors to be analyzed online.

1	 http://www.dcc.fc.up.pt/~vsc/Yap/
2	 available in open-source at http://code.google.com/p/etalis/
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ETALIS is a logical programming language, and its syntax is defined 
by rules, the main constructs of which are shown in Table  2. The 
underlying time model is linear, dense, but countable (i.e.,  ), and 
low-level events may be instantaneous events, as well as events with 
a duration: events are dated by time intervals [T1, T2] (with T1 = T2 in 
the case of instantaneous events). The language has a high expres-
siveness and contains:

•	 all of Allen’s 13 interval relations;
•	 constraints on event properties;
•	 a rather limited notion of absence within the framework of the 

sequence;
•	 two precisely distinguished kinds of conjunction (in series and 

in parallel);
•	 recursive behavior definitions, allowing, for example, the defi-

nition of a function accumulating a value over a sequence of 
events.

A first formal declarative semantic approach is provided in [3, 5], 
where event patterns (i.e., behaviors) are defined by induction in the 
manner of model theory. A recognition is a couple (q

1 
, q

2 
), with q

1 
, 

q
1
 ∈ Q delimiting the necessary and sufficient time interval for the 

recognition (its support). Other than this support, in which they must 
all have been encompassed, information pertaining to the events trig-
gering the recognition is not kept: there is no possibility of historiza-
tion, and multiplicity is limited to the cases in which the supports of 
the multiple recognitions are distinct.

Constructs Intuitive meaning

p where t Behavior p has been recognized and the term t is 
valued to true.

q This corresponds to the absolute instant q (for any 
q∈ ).

( ).p q Behavior p has been recognized and lasts exactly q, 
with q∈ .

1p  seq 2p Behavior 1p  is strictly followed (in time) by behavior 
2p . 

1p  and 2p Behaviors 1p  and 2p  have been recognized, with-
out any temporal constraint.

1p  par 2p Behaviors 1p  and 2p  have been recognized in 
parallel; i.e., they overlap in time.

1p  or 2p Either one of both behaviors has been recognized.

1p  equals 2p Both behaviors have been recognized over the exact 
same time interval.

1p  meets 2p Both 1p  and 2p  have been recognized, and the last 
recognition instant for 1p  exactly matches the first 
recognition instant of 2p .

1p  during 2p Behavior 1p  has been recognized within the recog-
nition of 2p .

1p  starts 2p The recognition interval of 1p  is an initial segment 
of the recognition interval of 2p .

1p  finishes 2p The recognition interval of 1p  is a final segment of 
the recognition interval of 2p .

not ( ) [ ]1 2 3. ,p p p Behaviors 2p  and 3p  have been recognized in 
this order, without any occurrence of 1p  strictly 
contained between both in time.

Table 2 - Main constructs of ETALIS [3]

The ETALIS recognition system is implemented in Prolog. This imple-
mentation relies on an operational semantics defined using logic 
programming rules. The complex behaviors to be recognized are 
are broken up into intermediate events called goals. ETALIS compiles 
complex behaviors into a set of rules allowing Event-Driven Backward 
Chaining, which allows an online recognition process. Two types of 
rules result from the compilation:

•	 rules creating the goals to be recognized, in order to progress 
in the recognition of a complex behavior, in the form of an event 
and the expectation of another event: goal ( )1 2[ , ][ , ] [ , ]

1, ,T Tb a ie− − − −  
means that when a (potentially complex) behavior a has been 
recognized over interval [ ]1 2,T T , the system expects an event 
b to recognize behavior 1ie ;

•	 rules creating intermediate events or event patterns: these 
check the database to determine whether a certain goal already 
exists, and, if this is the case, trigger the event that has been 
recognized by the goal: if goal ( )3 4 1 2[ , ] [ , ] [ , ]

1, ,T T T Tb a ie − −  is in the 
database, then event 1 4[ , ]

1
T Tie  is triggered and propagated if it is 

an intermediate event, or is used to trigger an action if it is one 
of the complex behaviors sought.

Rules of the latter type also allow goals that are obsolete and not 
needed anymore to be suppressed from the database.

In other terms, the underlying recognition structure is a binary tree. 
However, the equivalence of both these semantics has not been 
proven.

As to recognition multiplicity, ETALIS allows the following event 
consumption policies: recent, chronicle, and "free" (i.e., without any 
restriction). However, the declarative aspect is lost with any policy 
other than free, which means that the rule-evaluation order ceases 
to be neutral.

The performance of ETALIS is also assessed on a so-called Fast 
Flower Delivery use case [43].

ETALIS also handles delayed events [44] through two additional rule 
types:

•	 goal_out ( )3 4[ , ][ , ] [ , ]
1, ,T Ta b ie− − − − , expressing that Event b has 

been received and that an Event a having occurred before b is 
expected to finalize the recognition of 1ie .

•	 if goal_out(...) and 2 3<T T , expressing that if an event a 
indeed occurs at 2 3<T T , then event [ ]1 4,

1
T Tie  is triggered.

This algorithm does not have adverse effects on the efficiency of the 
recognition for events occurring on time. However, it requires a spe-
cific procedure to free memory by suppressing goal_out rules after 
a while. Reference [44] explains that, due to practical reasons (prob-
ably a matter of recognition efficiency by preventing rule overload) 
this functionality has not been implemented: therefore, multiplicity is 
lost. To handle delayed events in the case of an absence, ETALIS also 
allows the handling of revised events [4]: new rev goals are intro-
duced to suppress revised goals.

Chronicles

Chronicles are a family of formal languages developed to formally 
describe an event signature and, as such, provide a framework for 
CEP.
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Dousson’s chronicles

A chronicle language was introduced in [45], and developed mainly 
by Dousson et al. [39, 40, 41]. Within this framework, a chronicle is 
somehow a partial order of observable events in a certain context. 
Together with the language comes an efficient online recognition pro-
cess enabling the analysis of a flow of timestamped events that do not 
necessarily arrive in their order of occurrence, with the possibility of 
triggering actions or producing events at a date defined in relation to 
the dates of the events having caused the recognition.

In [39]: a chronicle model is presented as a set of formulae or tem-
poral schemas defining how the association of several observable 
events can lead to a new deduced event, and a set of constraints is 
given. A chronicle is thus a set of events together with contextual and 
temporal constraints. In this approach, the time model is discrete, 
totally ordered, and precise enough to take into account the observed 
events. In more recent works, Dousson et al. [41] associate attributes 
with events that can change their values: chronicles are represented 
by constraint graphs, with events as nodes, and the edges are labelled 
with integer intervals that represent time constraints.

This framework has also been used and adapted by Subias and 
Boufaied [18, 46] to various contexts, but always with discrete time. 
In his PhD work [42], Vu D u ’o’ng applies Dousson’s work to tele-
communication network diagnosis through alarm correlation.

Here is a broad idea of how chronicles are expressed in Dousson’s 
formalism. They are multi-sets of events with additional constraints 
expressed as time intervals (which may contain negative values, 
meaning that the events occur in reverse order than that specified) 
that must be fulfilled by pairs of events. For instance (see Figure 1), a 
chronicle may be A B C D where the interval between A and C must 
be within [−3, 2], the interval between A and D must be within [4, 6], 
and the interval between D and B must be within [−1, 4]. Each event 
in the multi-set has to be mapped exactly once to an event of the flow, 
and the mapping must be consistent with the constraints.

A D

C
–3

–1

2

4

4 6

B

Figure 1 - An example of Dousson’s Chronicle: 
[ 3,2] [4,6] [ 1,4]

C A D B
− −

← → →

The expressivity of Dousson’s formalism is rather low. In particular, 
the fact that chronicles can combine various intermediate patterns 
that may or may not share elementary events cannot be expressed. 
For instance, it is not possible to write a chronicle of the form 
( ) ( )&ABC DBE , that would be recognized if an event B occurs 
between A and C, and an event B (possibly the same, but not nec-
essarily) occurs between D and E. This cannot be expressed in 
Dousson’s formalism, where it is necessary to specify when design-
ing the chronicle whether there is a single B or two distinct B. In addi-
tion, absence is difficult to account for in Dousson’s work. Moreover, 
the issue above regarding shared events between subchronicles also 
applies for absence.

ONERA chronicles

In the formalism of ONERA chronicles, events are represented as 
ordered pairs comprising an event name and a real number (its occur-
rence date). The underlying time model is linear and continuous. 
These events can be endowed with information, called attributes, 
which are ordered pairs of an attribute name and a value.

Attributes are a very expressive feature of the language: an event can 
have any number of attributes and, given that recognitions are built 
upon events, new attributes can be computed, named and associated 
with recognitions, so as to be used at a higher level.

The chronicle language is built by induction, using, among others, 
four constructs expressing the sequence, the conjunction, and the 
disjunction of two behaviors, as well as the absence of a given behav-
ior during another behavior. These constructs have been presented in 
[20, 21].

In addition to this, ONERA chronicles express all of Allen’s 13 rela-
tions, as well as constraints on the durations of behaviors and a few 
additional constructs, such as a change of state and a derived event 
associated with the instant of recognition completion. Moreover, the 
chronicle language allows reasoning on event attributes: a predicate 
can express desired constraints on manipulated attributes. Constraints 
on attributes and attribute creations can be added at each level, and a 
notion of the evaluation context allows attributes to be handled properly 
in constructs where not all subchronicles are present in the recognition 
of a chronicle (typically, absence and disjunction).

The notion of chronicle recognition, originally [20, 21] based on a 
notion of a set of events leading to it, has therefore been replaced 
by a tree-based notion: indeed, an event model set does not retain 
the information specifying which event led to the recognition of 
which sub-chronicle, which becomes an issue when properties are 
expressed over event attributes. Consider, for example, Chronicle 

= ( ) &C A B A . Some recognitions of C may be due to two distinct 
events a (a denotes an instance of A). In a set formalism, these two 
events are undistinguishable, so it is impossible to determine which a 
led to the recognition of sub-chronicle A B, and which led to the rec-
ognition of the single A. Not only is this information lost, but this also 
affects the combinatorics, since the number of recognitions depends 
on this information: if this information is kept, two events a lead to 
two different recognitions of C depending on the distribution

3
.

Continuous time is managed through the use of a look-ahead function 
( ),CT dϕ  providing a future date until which the system does not 

need to be re-examined, since the recognition set would not have 
changed until then. Indeed, the systems considered here are asyn-
chronous, and this function provides the next time when it will be nec-
essary to check for the completion of a given chronicle with delays.

More details on the theoretical framework of chronicle recognition are 
presented in [60], but their general form is that of a triplet ( ), ,C P f , 
where:

•	 C∈X  is a chronicle formula (see below);
•	 P∈S  is a predicate symbol;
•	 ( ),f ∈T P   is an attribute transformation.

3	 Note that there is also one additional recognition for each event a leading to the 
recognitions of both sub-chronicles.
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X  is inductively defined together with two notions of contexts, which are functions from X  to P  (an evaluation context e  and a resulting context r ):

simple event: If A∈N , then ( ), ,P f ∈XA , ( ) { }, , =e A P f ◊ , et ( ) ( ), , = , ,r eA P f A P f  ;

sequence: If ( ) ( ) { }1 2 =e eC C∩ ◊  , then ( ), ,P f ∈X1 2C C , ( ) ( ) ( )1 2 1 2, , =e r rC C P f C C∪   , et ( ) ( )1 2 1 2, , = , ,r eC C P f C C P f  ;

conjunction: If ( ) ( ) { }1 2 =e eC C∩ ◊  , then ( ), ,P f ∈X1 2C & C , ( ) ( ) ( )1 2 1 2& , , =e r rC C P f C C∪   , 
( ) ( )1 2 1 2& , , = & , ,r eC C P f C C P f  ;

disjunction: ( ), ,P f ∈X1 2C C , ( ) ( ) ( )1 2 1 2, , =e r rC C P f C C∩   , and ( ) ( )1 2 1 2, , = , ,r eC C P f C C P f  ;

absence: If ( ) ( ) { }1 2 =e eC C∩ ◊  , then ( ) [ ]( )1 2C C , ,P f− ∈X , ( ) [ ]( ) ( ) ( )1 2 1 2, , =e r rC C P f C C− ∪   , and 
( ) [ ]( ) ( )1 2 1, , =r rC C P f C−  ;

meets: If ( ) ( ) { }1 2 =e eC C∩ ◊  , then ( )1 2C C , ,P f ∈Xmeets , ( ) ( ) ( )1 2 1 2, , =e r rC C P f C C∪  meets , and 
( ) ( )1 2 1 2, , = , ,r eC C P f C C P f meets meets ;

overlaps: If ( ) ( ) { }1 2 =e eC C∩ ◊  , then ( )1 2C C , ,P f ∈Xoverlaps , ( ) ( ) ( )1 2 1 2, , =e r rC C P f C C∪  overlaps , and 
( ) ( )1 2 1 2, , = , ,r eC C P f C C P f overlaps overlaps ;

starts: If ( ) ( ) { }1 2 =e eC C∩ ◊  , then ( )1 2C C , ,P f ∈Xstarts , ( ) ( ) ( )1 2 1 2, , =e r rC C P f C C∪  starts , and 
( ) ( )1 2 1 2, , = , ,r eC C P f C C P f starts starts ;

during: If ( ) ( ) { }1 2 =e eC C∩ ◊  , then ( )1 2C C , ,P f ∈Xduring , ( ) ( ) ( )1 2 1 2, , =e r rC C P f C C∪  during , and 
( ) ( )1 2 1 2, , = , ,r eC C P f C C P f during during ;

finishes: If ( ) ( ) { }1 2 =e eC C∩ ◊  , then ( )1 2C C , ,P f ∈Xfinishes , ( ) ( ) ( )1 2 1 2, , =e r rC C P f C C∪  finishes , and 
( ) ( )1 2 1 2, , = , ,r eC C P f C C P f finishes finishes ;

equals: If ( ) ( ) { }1 2 =e eC C∩ ◊  , then ( )1 2C C , ,P f ∈Xequals , ( ) ( ) ( )1 2 1 2, , =e r rC C P f C C∪  equals , and 
( ) ( )1 2 1 2, , = , ,r eC C P f C C P f equals equals ;

lasts δ : If *δ +∈ , then ( )1C , ,P fδ ∈Xlasts , ( ) ( )1 1, , =e rC P f Cδ lasts , and ( ) ( )1 1, , = , ,r eC P f C P fδ δ lasts lasts ;

at least δ : If *δ +∈ , then ( )1C , ,P fδ ∈Xatleast , ( ) ( )1 1, , =e rC P f Cδ atleast , and ( ) ( )1 1, , = , ,r eC P f C P fδ δ atleast atleast ;

at most δ : If *δ +∈ , then ( )1C , ,P fδ ∈Xatmost , ( ) ( )1 1, , =e rC P f Cδ atmost , and ( ) ( )1 1, , = , ,r eC P f C P fδ δ atmost atmost ;

then δ : If *δ +∈ , then ( )1C , ,P fδ ∈Xthen , ( ) ( )1 1, , =e rC P f Cδ then , and ( ) ( )1 1, , = , ,r eC P f C P fδ δ then then ;

naming: If { }\x∈ ◊P , then ( )1C x, ,P f→ ∈X , ( ) ( )1 1, , =e rC x P f C→  , ( ) { }1 , , = ,r C x P f x→ ◊ ;

cut: If ( ) ( ) { }1 2 =e eC C∩ ◊  , then ( )1 2C !C , ,P f ∈X , ( ) ( ) ( )1 2 1 2! , , =e r rC C P f C C∪   , and ( ) ( )1 2 1 2! , , = ! , ,r eC C P f C C P f  ;

change of state: If ( ) ( ) { }1 2 =e eC C∩ ◊  , then ( )1 2C !!C , ,P f ∈X , ( ) ( ) ( )1 2 1 2!! , , =e r rC C P f C C∪   , and 
( ) ( )1 2 1 2!! , , = !! , ,r eC C P f C C P f  ;

recognition event: ( )1@C , ,P f ∈X , ( ) ( )1 1@ , , =e rC P f C  , and ( ) ( )1 1@ , , =r rC P f C  .

event ( ),e t R∈ ∈ ∈N E event flow ( ) ( )( )1 1 2 2, , , ,e t e t   such that 1i it t +<

τ , name for time elapsed attribute retrieval function a : ( ) ( ),,
i ii i e te t X

event attributes P V⊂ × behavior recognition attributive set

attribute names values
( )( ) ( )( ){ }
( ) ( ){ }( ){
( ) ( ){ }( ) }

1 21 21 2

1 1.1 1.1 1.2 1.2

2 2.1 2.1 2.2 2.2

, ,, , , ,

, , , , , ,

, , , , , ,

j jj je tj e tj

j j j j j

j j

r

j j j

p X p X

p p p

p p

X

p

υ υ

υ υ

=

=

=





 

event attributes set

( ) ( ) ( ){ }1 1 2 2, , , , ,i i i ie t p v p vX = 

Figure 2 - Events and attributes for chronicles
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Chronicles allow for multiplicity and historization of recognitions. They 
also allow the gradual recognition of behaviors in real time, as events 
flow. The need for multiplicity and historization prevents the use of 
simple finite-state automata (see [17]), but a first recognition tool 
called Chronicle Recognition System (CRS/ONERA) was developed at 
ONERA in the late 1990s in [19], based on duplicating automata so 
as to comply with performance and inter- operability requirements. A 
colored Petri net model was also developed, implementing chronicle 
recognition for the initial operators – sequence, conjunction, disjunc-
tion, and absence – and its adequacy has been proven (see [23, 21]). 
A new recognition tool has also been developed in the form of a C++ 
library called Chronicle Recognition Library (CRL)

4
, which can be eas-

ily used for real-world critical applications. Its algorithms are directly 
based on the formal semantics of the chronicle language, therefore the 
recognitions produced by CRL are considered t be adequate by con-
struction. The efficiency of CRL is also ensured by a validity window 
mechanism that eliminates obsolete initiated recognitions after a time 
specified by the user. Applications of CRL are presented in [24, 22].

Other approaches

Other families of approaches to stream reasoning are at the two far 
ends of the spectrum of SR techniques: DSMS and KRR. We illustrate 
them in this section through two representative examples: CQL (a DSMS 
framework) and LARS (based on KRR and answer set programming).

Continuous Query Language

Continuous Query Language (CQL) [6, 7] is a language based on the 
database query language SQL, extended with streams as additional 
data sources. In CQL, a stream is viewed as a bag of elements in the 
form ,c t , where c is a tuple and t is a timestamp; a relation maps 
timestamps to bags of tuples. To make these concepts compatible, 
the operational semantics of CQL relies on three kinds of operators:

•	 Relation-to-Relation operators contain usual SQL operators to 
manipulate relations;

•	 Stream-to-Relation operators apply window functions to the in-
put stream to create a relation for recent tuples;

•	 Relation-to-Stream operators translate back a relation into a 
stream for the output of continuous queries.

There are interesting parallels between CQL and our approach; in par-
ticular, the fact that CQL has operational semantics where evaluation 
is performed stepwise as a query is evaluated. However, being based 
on SQL-like queries, CQL handles the stream by filtering, joining 
and aggregating data in a deterministic way, and does not allow for 
abstractions, constraints, complex negation, and non-determinism.

Compared to CQL, our approach allows additional abstraction and 
reasoning features, including the absence (which is a form of complex 
negation) and temporal modalities. Both features are particularly impor-
tant in our approach, as evidenced by the various levels of reasoning 
in aerospace case studies that we have treated (cf. Table 5.9 in [60]): 
indeed, intermediate (i.e., Level-2) and interest (i.e., Level-3) chron-
icles contain temporal modalities (e.g., at least, @, and !! in Level-2 
chronicles, as well as in Level-3 chronicle NoClearanceToTakeOff(ID), 

4	 CRL has been deposited at the French Agency for Program Protection and is 
available under the GNU LGPL license.

as well as absences with additional correlations to event attributes; 
e.g., Level-3 chronicle NoFrequencyToTakeOff(ID).

LARS

LARS [16] consists of two languages: LARS formulae extend propo-
sitional logic with generic window operators and additional controls 
to handle temporal information, and, on top of this, LARS programs 
extend Answer Set Programming (ASP) with rich stream-reasoning 
capabilities. It is aimed at targeting AI applications in a streaming con-
text, such as diagnosis, configuration, or planning.

Fragments of LARS have been implemented in several experimental 
prototypes [16], based on different realization principles, but they 
either lack efficiency or are restricted to specific LARS programs, in 
particular with restrictions on the use of negations.

In contrast to chronicles, LARS semantics is based on time points. 
Nevertheless, as stated in [16], when comparing LARS and ETALIS, 
it is possible to represent intervals in LARS and thus partially cap-
ture the notion. However, this representation is unable to take into 
account overlapping intervals (for a same formula): indeed, LARS 
assigns atoms to a single timeline by an evaluation function, so it can 
encode intervals only by assigning atoms to consecutive time points. 
Adjacent or overlapping intervals for the same atom cannot be distin-
guished and, worse still, merge into a single larger interval, which is 
incompatible with our objective of multiple recognitions.

An application to aeronautics

To illustrate the interest of these techniques in the aeronautic field, we 
present an example of a hypothetical unmanned aircraft inserted into 
general air traffic, as described in Figure 3.

This is a global problem that raises many interesting issues, and implies 
interactions between the aircraft, its pilot (on the ground) and Air Traffic 
Control (ATC). We focus here on a potential hazard, which is the loss of 
the telecommand (TC) link, meaning that the pilot is unable to transmit 
orders to the unmanned aircraft. In such a case, there has to be a pre-
determined course of action (e.g., return to base, pursue current route, 
land at the nearest airport, etc., – which one exactly is not relevant here). 
If such a loss occurs, it is obviously important that all three agents 
(ATC, pilot, and aircraft) share the same understanding of the situa-
tion, so that, in particular, both of the human actors act consistently. 

UA

ATC RPS

Voice

Voice

Telecommand 
& Voice

Voice & 
Telemetry

Figure 3 - Schematic representation of the three-agent system



Issue 15 - September 2020 - A Survey on Chronicles and Other Behaviour Detection Techniques
	 AL15-02	 9
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Figure 4 - State diagram of telecommand loss
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However, each actor has access only to a partial sub-
set of information, from which they deduce the status of 
the TC link. Hence, their reasoning can be modelled through 
chronicles and this can be used to detect inconsistencies.

Here, low-level observable events will schematically be the actions 
performed by each agent on the system or their changes of state, 
which are modelled according the state diagram in Figure 4 represent-
ing the protocol followed by each agent. The diagram is distributed 
between the three agents: UA (Unmanned Aircraft), RPS (Remote 
Pilot Station), ATC. Each agent is broken down into sub-systems. A 
sub-system represents a functionality controlled by the agent, or a 
specific knowledge that it may possess about the overall system situ-
ation; e.g., the RPS Voice sub-system describes whether the RPS is 
aware of a potential radio communication loss. Each sub-system is a 
set of states that have to be followed in a specific order regarding the 
system evolution. Arrows between states describe this order and the 
necessary conditions to trigger a state change, and may possibly be 
associated with a specific action to be performed by the agent. This 
information is labelled on the arrows in three different parts: event, 
condition and action, and written event [condition]/action.

The formalism can then be used to detect undesired behaviors, such as:
•	 Incoherent ATC Voice: the transponder code emitted by the UA 

starts indicating code 7600 to Air Traffic Control, which means 
that there is a voice failure, but the controller has not realized 
this, and this is expressed by the fact that the diagram does not 
switch to ATC Lost Voice.

•	 Incoherent flight mode UA/ATC: after a fault that has been 
solved, the UA has switched back to a nominal flight but ATC 
remains in an urgency service.

Once one of these behaviors is detected, its origins have to be deter-
mined. If the cause is due to faulty behavioral guidelines, then the 
model has to be corrected, and, otherwise, if the source is human, 
it should be planned to trigger alarms warning the pilot and/or the air 
traffic controller of the situation.

These behaviors are represented by the following chronicles:
•	 Incoherent ATC Voice

(to_ATC_Nominal_Code to_ATC_7600_Code then 5) − [to_
ATC_Lost_Voice]

•	 Incoherent flight mode UA/ATC
(from_UA_Nominal_Flight

((to_UA_Nominal_Flight then 10) − [from_UA_
Nominal_Flight]))

−[to_ATC_Nominal_Service]

The possibility, once a hazardous behavior has been recognized, of 
determining its origin is provided by the properties of the chronicle 
framework.

Conclusion

While no single Stream-Reasoning approach can claim to be able to 
tackle all possible uses of Stream Reasoning, the overview of meth-
ods presented in this paper shows that handling a rapidly changing 
dynamic dataflow with elaborate reasoning is now feasible. These 
methods find applications in a very broad spectrum, which includes:

•	 the detection of inconsistencies between pilot and air traffic 
control in a scenario where an unmanned aircraft may lose its 
telecommand [24] (see above), with chronicles;

•	 the supervision and analysis of hazardous situations using an 
unmanned aircraft to assist police services [47, 35, 36, 34], 
with chronicles;

•	 various medical applications, including heart monitoring [30, 25, 
62, 37, 61, 27], using chronicles together with learning techniques;

•	 management of alarms for the detection of cyber-intrusions 
[56], with Dousson’s chronicles;

•	 Web-service diagnostics [59, 31, 52], with chronicles;
•	 public transportation quality assessment [48, 68], with EC 

(project PRONTO);
•	 video-surveillance [66, 13, 11, 9], with EC (project CAVIAR);
•	 social media analysis [66];
•	 assistance in decision-making during air combat [29], with 

chronicles;
•	 network supervision and monitoring management[67], with 

chronicles;
•	 supervision of a gas turbine in a petrochemical plant [55] and 

supervision of a milk factory [53], with chronicles;
•	 characterization of human activities [32], with chronicles 

References

[1]	 J. F. Allen - Maintaining Knowledge about Temporal Intervals. Commun. ACM, Pages 832-843, 1983.

[2]	 D. Anicic - Event Processing and Stream Reasoning with ETALIS. PhD thesis, Karlsruhe Institute of Technology, 2011.

[3]	 D. Anicic, P. Fodor, S. Rudolph, R. Stühmer, N. Stojanovic, R. Studer - A Rule-Based Language for Complex Event Processing and Reasoning. 
Proceedings of the Fourth International Conference on Web Reasoning and Rule Systems (RR 2010), Pages 42-57. Springer, 2010.

[4]	 D. Anicic, S. Rudolph, P. Fodor, N. Stojanovic - Retractable Complex Event Processing and Stream Reasoning. Proceedings of the 5th International 
Conference on Rule-Based Reasoning, Programming, and Applications, Pages 122-137. Springer, 2011.

[5]	 D. Anicic, S. Rudolph, P. Fodor, N. Stojanovic - Real-Time Complex Event Recognition and Reasoning – A Logic Programming Approach. Applied 
Artificial Intelligence, 26(1-2):6-57, 2012.

[6]	 A. Arasu, S. Babu, J. Widom - Cql: A Language for Continuous Queries over Streams and Relations. International Workshop on Database Programming 
Languages, Pages 1-19. Springer, 2003.

[7]	 A. Arasu, S. Babu, J. Widom - The cql Continuous Query Language: Semantic Foundations and Query Execution. The VLDB Journal, 15(2):121-142, 2006.

[8]	 A. Artikis, O. Etzion, Z. Feldman, F. Fournier - Event Processing under Uncertainty. Proceedings of the 6th ACM International Conference on 
Distributed Event-Based Systems, Pages 32-43. ACM, 2012.

[9]	 A. Artikis, G. Paliouras - Behaviour Recognition Using the Event Calculus. Artificial Intelligence Applications and Innovations III, Pages 469-478. Springer, 2009.



Issue 15 - September 2020 - A Survey on Chronicles and Other Behaviour Detection Techniques
	 AL15-02	 11

[10]	 A. Artikis, G. Paliouras, F. Portet, A. Skarlatidis - Logic-Based Representation, Reasoning and Machine Learning for Event Recognition.  
Proceedings of the Fourth ACM International Conference on Distributed Event-Based Systems. ACM, 2010.

[11]	 A. Artikis, M. Sergot, G. Paliouras - A Logic Programming Approach to Activity Recognition. Proceedings of the 2nd ACM International Workshop 
on Events in Multimedia, Pages 3-8. ACM, 2010.

[12]	 A. Artikis, M. Sergot, G. Paliouras - Run-Time Composite Event Recognition. Proceedings of the 6th ACM International Conference on Distributed 
Event-Based Systems, Pages 69-80. ACM, 2012.

[13]	 A. Artikis, A. Skarlatidis, G. Paliouras - Behaviour Recognition from Video Content: A Logic Programming Approach. International Journal on 
Artificial Intelligence Tools, 19(02):193-209, 2010.

[14]	 A. Artikis, M. Weidlich, A. Gal, V. Kalogeraki, D. Gunopulos - Self-Adaptive Event Recognition for Intelligent Transport Management. Big Data, 
2013 IEEE International Conference on, Pages 319-325. IEEE, 2013.

[15]	 A. Artikis, M. Weidlich, F. Schnitzler, I. Boutsis, T. Liebig, N. Piatkowski, C. Bockermann, K. Morik, V. Kalogeraki, J. Marecek, et al. - 
Heterogeneous Stream Processing and Crowdsourcing for Urban Traffic Management. Proceedings of the 17th International Conference on Extending 
Database Technology (EDBT 2014). Athens, Greece, 2014.

[16]	 H. Beck, M. Dao-Tran, T. Eiter - LARS: A Logic-Based Framework for Analytic Reasoning over Streams. Artificial Intelligence, Pages 16-70, 2018.

[17]	 O. Bertrand, P. Carle, C. Choppy - Chronicle Modelling Using Automata and Coloured Petri Nets. 18th International Workshop on Principles of 
Diagnosis (DX-07), Pages 229-234, 2007.

[18]	 A. Boufaied, A. Subias, M. Combacau - Détection distribuée par reconnaissance floue de chroniques. Journal Européen des Systèmes Automatisés, 
40(2):233-259, 2006.

[19]	 P. Carle, P. Benhamou, F.-X. Dolbeau, M. Ornato - La reconnaissance d’intentions comme dynamique des organisations. 6èmes Journées 
Francophones pour l’Intelligence Artificielle  Distribuée et les Systèmes Multi-Agents (JFIADSMA’98), 1998.

[20]	 P. Carle, C. Choppy, R. Kervarc - Behaviour Recognition using Chronicles. Proc. 5th IEEE International Symposium on Theoretical Aspects of 
Software Engineering, Pages 100-107, 2011.

[21]	 P. Carle, C. Choppy, R. Kervarc, A. Piel - Behavioural Analysis for Distributed Simulations. 19th Asia-Pacific Software Engineering Conference (APSEC), 2012.

[22]	 P. Carle, C. Choppy, R. Kervarc, A. Piel - Handling Breakdowns in Unmanned Aircraft Systems. 18th International Symposium on Formal Methods 
(FM) - Doctoral Symposium, 2012.

[23]	 P. Carle, C. Choppy, R. Kervarc, A. Piel - A Formal Coloured Petri Net Model for Hazard Detection in Large Event Flows. 20th Asia-Pacific Software 
Engineering Conference (APSEC), 2013.

[24]	 P. Carle, C. Choppy, R. Kervarc, A. Piel - Safety of Unmanned Aircraft Systems Facing Multiple Breakdowns. 1st French Singaporean Workshop on 
Formal Methods and Applications (FSFMA), 2013.

[25]	 G. Carrault, M.-O. Cordier, R. Quiniou, F. Wang - Temporal Abstraction and Inductive Logic Programming for Arrhythmia Recognition From 
Electrocardiograms. Artificial Intelligence in Medicine, 28(3):231-263, 2003.

[26]	 Z. Chaochen, C. A. R. Hoare, A. P. Ravn - A Calculus of Durations. Information Processing Letters, 40(5):269-276, 1991.

[27]	 L. Chittaro, M. Dojat - Using a General Theory of Time and Change in Patient Monitoring: Experiment and Evaluation. Computers in Biology and 
Medicine, 27(5):435-452, 1997.

[28]	 L. Chittaro, A. Montanari - Efficient Temporal Reasoning in the Cached Event Calculus. Computational Intelligence, 12(3):359-382, 1996.

[29]	 S. Coradeschi, T. Vidal - Accounting for Temporal Evolutions in Highly Reactive Decision-Making. Fifth IEEE International Workshop on Temporal 
Representation and Reasoning, Pages 3-10, 1998.

[30]	 M.-O. Cordier, C. Dousson - Alarm Driven Monitoring Based on Chronicles. 4th SafeProcess, Pages 286-291, 2000.

[31]	 M.-O. Cordier, X. Le Guillou, S. Robin, L. Rozé, T. Vidal - Distributed Chronicles for On-line Diagnosis of Web Services. 18th International 
Workshop on Principles of Diagnosis (DX-07), Pages 37-44, 2007.

[32]	 D. Cram, B. Mathern, A. Mille - A Complete Chronicle Discovery Approach: Application to Activity Analysis. Expert Systems, 29(4):321-346, 2012.

[33]	 G. Cugola, A. Margara - Processing Flows of Information: From Data Stream to Complex Event Processing. ACM Computing Surveys (CSUR), 44(3):15, 2012.

[34]	 P. Doherty, G. Granlund, K. Kuchcinski, E. Sandewall, K. Nordberg, E. Skarman, J. Wiklund - The Witas Unmanned Aerial Vehicle Project. 
ECAI, Pages 747-755, 2000.

[35]	 P. Doherty, J. Kvarnström, F. Heintz - A Temporal Logic-Based Planning and Execution Monitoring Framework for Unmanned Aircraft Systems. 
6th International Conference on Recent Advances in Intrusion Detection (RAID’03), 2009.

[36]	 P. Doherty, J. Kvarnström, F. Heintz - A Temporal Logic-Based Planning and Execution Monitoring Framework for Unmanned Aircraft Systems. 
Autonomous Agents and Multi-Agent Systems, Pages 332-377, 2009.

[37]	 M. Dojat - Realistic Model for Temporal Reasoning in Real-Time Patient Monitoring. Applied Artificial Intelligence, 10(2):121-144, 1996.

[38]	 P. Domingos, D. Lowd - Markov Logic: An Interface Layer for Artificial Intelligence. Synthesis Lectures on Artificial Intelligence and  Machine Learning,  
3(1):1-155, 2009.

[39]	 C. Dousson, P. Gaborit, M. Ghallab - Situation Recognition: Representation and Algorithms. International Joint Conference on Artificial Intelligence 
(IJCAI), Pages 166-172, 1993.

[40]	 C. Dousson - Extending and Unifying Chronicle Representation with Event Counters. Proceedings of the 15th European Conference on Artificial 
Intelligence, ECAI’2002, Lyon, France, July 2002, Pages 257-261, 2002.

[41]	 C. Dousson, P. Le Maigat - Chronicle Recognition Improvement Using Temporal Focusing and Hierarchization. Proceedings of the International Joint 
Conference on Artificial Intelligence (IJCAI), Pages 324-329, 2007.

[42]	 T. Vu Du’o’ng - Découverte de chroniques à partir de journaux d’alarmes, application à la supervision de réseaux de télécommunications. PhD thesis, 
Institut National Polytechnique de Toulouse, 2001.



Issue 15 - September 2020 - A Survey on Chronicles and Other Behaviour Detection Techniques
	 AL15-02	 12

[43]	 O. Etzion, P. Niblett - Event Processing in Action. Manning Publications Co., 2010.

[44]	 P. Fodor, D. Anicic, S. Rudolph - Results on Out-of-Order Event Processing. Proceedings of the 13th International Conference on Practical Aspects 
of Declarative Languages, Pages 220-234. Springer, 2011.

[45]	 M. Ghallab - On Chronicles: Representation, On-Line Recognition and Learning. KR, Pages 597-606, 1996.

[46]	 H.-E. Gougam, A. Subias, Y. Pencolé - Timed Diagnosability Analysis Based on Chronicles. 8th IFAC International Symposium on Fault Detection, 
Supervision and Safety of Technical Processes SAFEPROCESS’2012, Pages 1256-1261, 2012.

[47]	 F. Heintz - Chronicle Recognition in the WITAS UAV Project, a Preliminary Report. Swedish AI Society Workshop (SAIS2001), 2001.

[48]	 P. Kaarela, M. Varjola, L. P. J. J. Noldus, A. Artikis - Pronto: Support for Real-Time Decision Making. Proceedings of the 5th ACM International 
Conference on Distributed Event-Based System, Pages 11-14. ACM, 2011.

[49]	 A. Kimmig, B. Demoen, L. De Raedt, V. Santos Costa, R. Rocha - On the Implementation of the Probabilistic Logic Programming Language 
Problog. Theory and Practice of Logic Programming, 11(2-3):235-262, 2011.

[50]	 R. Kowalski, M. Sergot - A Logic-Based Calculus of Events. New Generation Computing, 4(1):67-95, 1986.

[51]	 K. Kumar, A. Mukerjee - Temporal Event Conceptualization. Proceedings of the Tenth IJCAI Conference, 1987.

[52]	 X. Le Guillou, M.-O. Cordier, S. Robin, L. Rozé, et al. - Chronicles for On-Line Diagnosis of Distributed Systems. Proceedings of the European 
Conference on Artificial Intelligence (ECAI), Pages 194–198, 2008.

[53]	 A. MÕhalla, E. Craye, S. C. Dutilleul, M. Benrejeb - Monitoring of a Milk Manufacturing Workshop Using Chronicle and Fault Tree Approaches. 
Studies inInformatics and Control, 19(4):377-390, 2010.

[54]	 R. Miller, M. Shanahan - The Event Calculus in Classical Logic – Alternative Axiomatizations. Electronic Transactions on Artificial Intelligence 
(http://www.etaij.org), 4, 1999.

[55]	 R. Milne, C. Nicol, M. Ghallab, L. Trave-Massuyes, K. Bousson, C. Dousson, J. Quevedo, J.Aguilar, A. Guasch - TIGER: Real-Time 
Situation Assessment of Dynamic Systems. Intelligent Systems Engineering, 3(3):103-124, 1994.

[56]	 B. Morin, H. Debar - Correlation on Intrusion: An Application of Chronicles. 6th International Conference on Recent Advances in Intrusion Detection 
(RAID’03), Pages 94-112. Springer, 2003.

[57]	 A. Paschke, M. Bichler - Knowledge Representation Concepts for Automated Sla Management. Decision Support Systems, 46(1):187-205, 2008.

[58]	 A. Paschke, A. Kozlenkov, H. Boley - A Homogeneous Reaction Rule Language for Complex Event Processing. Workshop on Event driven 
Architecture, Processing and Systems, 2007.

[59]	 Y. Pencolé, A. Subias - A Chronicle-Based Diagnosability Approach for Discrete Timed-Event Systems: Application to Web-Services. Journal of 
Universal Computer Science, 15(17):3246-3272, 2009.

[60]	 A. Piel - Reconnaissance de comportements complexes par traitement en ligne de flux d’évènements. PhD thesis, Université Paris 13 / ONERA, 2014.

[61]	 F. Portet - Pilotage d’algorithmes pour la reconnaissance en ligne d’arythmies cardiaques. PhD thesis, Université Rennes 1, 2005.

[62]	 R. Quiniou, L. Callens, G. Carrault, M.-O. Cordier, E. Fromont, P. Mabo, F. Portet - Intelligent Adaptive Monitoring for Cardiac Surveillance. 
Computational Intelligence in Healthcare 4, Pages 329-346. Springer, 2010.

[63]	 R. Rincé, R. Kervarc, P. Leray - On the Use of WalkSAT-Based Algorithms for MLN Inference in Some Realistic Applications. Proceedings of the 30th 
International Conference on Industrial, Engineering, and Other Applications of Applied Intelligent Systems, Pages 121-131, 2017.

[64]	 A. Skarlatidis, A. Artikis, J. Filippou, G. Paliouras - A Probabilistic Logic Programming Event Calculus. Journal of Theory and Practice of Logic 
Programming (TPLP), 15(2):213-245, 2015.

[65]	 A. Skarlatidis, G. Paliouras, G. A. Vouros, A. Artikis - Probabilistic Event Calculus based on Markov Logic Networks. 5th International Conference 
on Rule-Based Modeling and Computing on the Semantic Web, Pages 155-170. Springer, 2011.

[66]	 N. Stojanovic, A. Artikis - On Complex Event Processing for Real-Time Situational Awareness. 5th International Conference on Rule-Based Reasoning, 
Programming, and Applications, Pages 114-121. Springer, 2011.

[67]	 A. Subias, E. Exposito, C. Chassot, L. Trave-Massuyes, K. Drira - Self-Adapting Strategies Guided by Diagnosis and Situation Assessment in 
Collaborative Communicating Systems. 21st International Workshop on Principles of Diagnosis (DX 10), Pages 329-336, 2010.

[68]	 M. Varjola, J. Loffler - Pronto: Event Recognition for Public Transport. 17th ITS World Congress, 2010.

[69]	 K. Walzer, M. Groch, T. Breddin - Time to the Rescue - Supporting Temporal Reasoning in the Rete Algorithm for Complex Event Processing. 
Database and Expert Systems Applications, Pages 635-642. Springer, 2008.

Ariane Piel graduated from Université Paris 13 in 2014 where she 
received her Ph.D. in computer science. She also holds a M.Sc. 
in mathematical logic and foundations of computer science. From 
2011 to 2016, she was a Ph.D. student and then a post-doctoral 
researcher at ONERA – The French Aerospace Lab, in the Depart-

ment for System Design and Performance Evaluation. Since 2016, she has been 
a full-time research fellow at CEA-LIST. Her research interests are focused on 
logic and formal methods for the conception and evaluation of systems.

AUTHORS

Romain Kervarc graduated from the École Normale Supé
rieure de Lyon and obtained a Ph.D. in formal logic in 2007. 
Since then, he has been a full-time researcher at Onera, 
where he is the head of research unit "Modelling and Engineer-
ing of Distributed Systems and Software". His research inter-

ests include system modelling, formal methods, complex event processing, 
temporal logic and mixed logical and stochastic approaches, with a particular 
focus on the application of such method to actual industrial systems.


