
Issue 15 - September 2020 - A Survey on Chronicles and Other Behaviour Detection Techniques
	 AL15-02	 1

Artificial Intelligence and Decision Making

A Survey on Chronicles
and other Behavior

Detection Techniques

Until recently, the processing of a rapidly changing dataflow used to be very
costly in terms of computation duration. Thus, the extraction of semantic

information, requiring complex correlations of events in a temporal pattern, was
not possible in real time. Computer performance has sufficiently improved to
now allow such processing to take place, with, obviously, a very broad range of
interesting applications. Various underlying formal frameworks exist to perform this
kind of analysis, and this paper is aimed at reviewing the various (families of) such
formalisms, and at comparing them according to a series of general features. It also
provides a detailed example of the kind of analysis that can be performed with these
formalisms in aeronautics, where the recent evolution of air traffic management, the
potential introduction of unmanned aircraft in general air traffic, and various other recent
trends form a general context pointing toward a much wider use of dataflow exchanges.

R. Kervarc
(ONERA)

A. Piel
(CEA LIST, Executable Language
Engineering and Optimisation
Laboratory R&D Department)

E-mail: romain.kervarc@onera.fr

DOI: 10.12762/2020.AL15-02

Introduction

Over the past years, the handling of rapidly changing dataflows at a
semantic level has attracted a lot of interest. Indeed, while the seman-
tic processing of a large, fast-pace flow of data used to be too costly
in terms of computation, thus obliging to a choice between online
syntactic processing and offline semantic processing, computer per-
formance now allows semantic information to be extracted on-the-fly
from a large dataflow.

This is, of course, a quite interesting feature in a very broad spectrum
of fields, as is evidenced by many recent applications of artificial
intelligence. Aeronautics is a particularly interesting field for these
dataflow extraction techniques: indeed, while exchanges between
pilots and control used to rely mostly on radio, nowadays a large
flow of data is exchanged between them. The potential introduction of
unmanned aircraft and the recent evolution of air traffic management
also point toward a large flow of data exchanges, to which agents
of the system have partial access (each having different sensors to
track the underlying events), and the introduction of reasoning and
semantic processing of these events is a valuable assistance for the
pilots and controllers involved.

Traditionally, information extraction from dataflows has been roughly
classified into two families of approaches:

•	 on the one hand, information flow processing (IFP): these ap-
proaches focus on efficiently handling dataflows by treating
incoming information on the fly and providing extracted infor-
mation in real time;

•	 on the other hand, knowledge representation and reasoning
(KRR): these approaches focus on complex reasoning abilities,
but perform well mostly on data that changes in low volumes
at low frequency.

Stream Reasoning is a multidisciplinary approach to this issue, which
encompasses both families and is aimed at combining their respec-
tive benefits by enabling complex reasoning about rapidly-changing
information flows.

Knowledge-representation and reasoning approaches are based on
temporal logic, belief revision, changing vocabularies and evolving
ontologies. They find lots of applications within the context of the
Semantic Web and allow very complex reasoning tasks. However,
there are two drawbacks with regard to these for handling rapidly-
changing dataflows. First, the tools involved generally rely on strong
combinatorics, and are often not able to scale up to high-frequency
dataflows. Second, typical Semantic Web architectures generally

Issue 15 - September 2020 - A Survey on Chronicles and Other Behaviour Detection Techniques
	 AL15-02	 2

crawl and cache information, which is not a robust approach in the
case of high-frequency dataflows, since the crawled and cached
information would become obsolete too quickly.

Information flow processing is rooted in the so-called Data Stream
Management Systems (DSMS), which historically stem from Data
Base Management Systems (DBMS). As their name indicates,
DBMS are intended to manage databases; i.e., persistent data, where
updates are infrequent and where information is extracted through
user-made queries. DSMS try to accommodate, within this transient
framework, continuously updating data: instead of handling queries
that are run just once and of returning a comprehensive answer,
DMSM continuously run standing queries and return partial answers
that are updated on the fly as new data arrives.

Even if they do not seem to have much in common (DBMS handle
persistent data by executing ad-hoc queries just once, while DSMS
handle transient data by continuously running generic queries), both
approaches share a common background and, in particular, process
data through transformations based on a relational algebra (e.g.,
selection, aggregation, joining, etc.). Thus, DSMS can be described,
in general, as having very good performance in terms of efficiency,
but a rather limited expressivity.

To overcome this limitation, other approaches have been developed in
various communities, in which a notion of "distributed system" existed.
These approaches have a common characteristic, which is that they
consider incoming information in the dataflow not per se, but rather
as a notification of events occurring in the real world, and are aimed
at reconstructing the higher-level behavior of which these events are a
trace, mostly through filtering and combinations. In this sense, they are
pretty much inspired by the publish-subscribe model that is commonly
found in distributed systems: on top of the usual publish-subscribe
system, where events are considered separately from the others, they
build a more expressive subscription language that allows complex
event patterns involving (much) more than one event to be considered.
These approaches are referred to by the generic designation of com-
plex event processing (CEP). While traditionally classified as part of
the IFP family, some CEP techniques have reached reasoning abilities
that are comparable to some KRR approaches.

CEP techniques, due to the variety of applications and associated
specific needs, exist in a broad variety. This paper is aimed at com-
paring several CEP frameworks, namely:

•	 Event Calculus: an approach based on situation calculus, but
dealing with local rather than global events;

•	 ETALIS: an approach based on logical programming and aimed
at combining temporal properties with database querying;

•	 Chronicles: a generic term encompassing various systems
based on event signatures;

•	 Other approaches that are not strictly CEP, but rather based on
active databases, DSMS, or KRR.

This paper is organized as follows. First of all, we describe the various
important features that can be used to distinguish the various formal
frameworks that exist in the CEP community. Then, we discuss the
compared merits of the techniques (or technique families) described
above, according to these features. We then illustrate the interest of the
approach within an aeronautic context, considering an example. Finally,
we conclude this survey by providing a brief overview of the various
domains where CEP-related techniques have been used with success.

Important features

As stated above, there are many different approaches to stream rea-
soning and they fulfil the various needs of a broad variety of appli-
cations. This section lists the various features that can be used as
distinctive criteria for different stream-reasoning approaches.

Language-related features

Any stream-reasoning technique relies upon a formal language that
is used to describe the behaviors to be identified. As is frequently the
case, expressivity generally results from a trade-off:

•	 on the one hand, high expressivity is desirable in order to be
able to finely describe the behaviors to be detected, and to
distinguish behaviors that have very similar traces in terms of
observable events;

•	 on the other hand, higher expressivity inevitably implies a more
complex recognition process, and thus less-efficient computation.

In [33] (Section 3.8), Cugola and Margara list operators that are com-
monly found in the constructs of most CEP frameworks, notably:

•	 Sequence: two patterns following each other, generally with the
sole condition that the first pattern must have been completely
recognized before the recognition of the second one starts
(some frameworks add that the ending point of the first one
must coincide strictly with the starting point of the second one);

•	 Disjunction: either one of two patterns must be present; when
dealing with a rich event (with valued attributes), this can lead
to complications because, unless both patterns in the disjunc-
tion contain the same event attributes, it may no longer be pos-
sible to reason about these attributes;

•	 Conjunction: it is worth noting that the conjunction cannot be
reduced with the two previous operators, since when the el-
ements of conjunction are not elementary events, but rather
involve more than one event, conjunction allows intertwined
behavior which sequences do not;

•	 Iteration, which can be parameterized by the number of itera-
tions (which is a parameter relating to the structure of the be-
havior);

•	 Negation: this operator is generally tricky when dealing with
a flow of information. Indeed, there has to be some form of
boundary on the part of the flow, in which a negation must be
detected in order to be able to yield effective detections. Oth-
erwise, there will always be a possibility that a later event may
trigger the recognition of the negated behavior, and hence in-
validate the recognition of its negation. Therefore, many authors
prefer to refer to absence (implicitly on a bounded support)
rather than negation;

•	 Temporal constraints: while many other temporal logics allow
interval properties (e.g., Duration Calculus in [26]) to be ex-
pressed, the formalism of Allen’s 13 relations [1] is a gener-
ally accepted reference in the domain of CEP (see [5, 51, 69]),
since it exhaustively considers all possible arrangements be-
tween two time intervals;

•	 Parameter value constraints: the parameters here are param-
eters of elementary events or of higher-order behaviors.

In addition to the extent to which each of these operators can be
expressed, another trait related to the underlying language is the
question of whether an open or closed syntax should be used; i.e.,
whether to allow meaningless formulae or not.

Issue 15 - September 2020 - A Survey on Chronicles and Other Behaviour Detection Techniques
	 AL15-02	 3

Besides expressivity, an important not-unrelated issue in stream rea-
soning is how behaviors to be detected can be extracted from experts
having an operational knowledge of the behaviors of interest. Within
this context, a concise and readable language, where syntactical
changes are easily associated with their semantics, is clearly desir-
able, but again there is a trade-off here, since a very-high readability
could lead to an extreme oversimplification of the language, and thus
to reduced expressivity.

Recognition-related features

The amount of information contained in recognition is also an important
feature, as since recognitions are, in principle, done with a purpose,
which implies processing that may require being able to return to the
triggering events in the flow. In this sense, recognition information can
constitute evidence of the recognition, and the nature of this evidence
may depend on the application: for example, in some applications, one
may be only interested in knowing that the behavior of interest occurred
at least once. In other applications, e.g., telecommunication network
monitoring [40], a single occurrence of a given behavior is generally
not significant, whereas its repetition is. When dealing with security and
safety, it is generally necessary to investigate all instances of hazardous
behaviors, and not just any. However, another trade-off arises, since
the identification of multiple recognitions requires keeping track of all
possible recognition starts, and of all intermediate recognitions, thus
having an adverse effect with regard to the efficiency of the recognition.

Thus, two main issues arise with regard to recognition: historization
and multiplicity.

As explained above, historization is a feature where events are considered
as a trace of the behaviors that have been recognized, and recognitions
contain the necessary information to return to the events that triggered it.

As to multiplicity, a classification of recognition contexts with respect
to this issue has been proposed in [33]:

•	 The "recent" context: only the most recent occurrence of an
event initiating a recognition is kept (each pattern to be recog-
nized is associated with a unique instance of its initiating event
at any point during the processing of the flow);

•	 The "chronicle" context: occurrences are managed in a FIFO
way, with the oldest occurrences being used first and discarded
as soon as they have been used;

•	 The "cumulative" context: all event occurrences are stored
but, whenever a pattern is recognized, all event occurrences
involved are discarded;

•	 The "continuous" context: all events are stored and can always
be used.

Flow-related features

An important feature of any stream-reasoning framework is the way
in which it deals with the event flow, and, indeed, which assumptions
it makes with regard to it, which determine what kinds of flows it is
able to handle. An ideal flow would be a unique flow, totally and strictly
ordered: while this kind of flow would probably be handled effectively
by most recognition algorithms, it may be possible, depending on the
context of the study, to consider other kinds of flows, and notably:

•	 Distributed flows: the flow may not be centralized, but rather be
made of several distributed subflows – in this case, the order-
ing between events provided by different subflows could be a

problem for behavior patterns depending on event order (e.g.,
sequence), especially if they are not timestamped by a syn-
chronous clocka;

•	 Partially-ordered flows: events in the flow are not totally or-
dered, which is a generalization of the previous case and leads
to the same problems;

•	 Non-strictly ordered flows: events may arise simultaneously;
this is a case that may have unexpected side-effects in situa-
tions where event order is important for the behavior;

•	 Delayed flow: events may arise late, or their occurrence date
may be corrected a posteriori (which happens, e.g., in cases
where events may be revised following the failure of a trans-
action) – in general, the date on which the event occurs dif-
fers from the date on which it is entered into the reasoning
system, which requires specific mechanisms to handle events
properly.

In addition, another important aspect of the flow is the time model that
it uses. Time is generally linear, but can be discrete, either with a fixed
pace or with variable granularity, or continuous. The time model may
also not exist: this is the case in most DSMS, where there is no time
model and events are considered only with an order – but this has, of
course, a negative impact on the expressivity of the language.

Uncertainty-related features

In real cases, lots of uncertainties appear naturally:
•	 With regard to event dates (or order);
•	 With regard to event attributes;
•	 With regard to the events themselves (whether they really oc-

curred or not);
•	 With regard to behavior parameters;
•	 With regard to behavior structures.

Depending on the uncertainties considered, specific mechanisms
have to be considered, either in the description language or in the
recognition algorithm itself.

Self-reference features

Recognitions can be self-referent and create events at various points
of the recognition process. The most frequent occurrence of this fea-
ture is when the recognition of a behavior triggers a new event that is
added to the flow. This yields many issues, since such systems are
intrusive: in particular, the flow depends on the monitored activities.
In extreme cases, recognitions may also have an effect on the moni-
tored activities, where new activities to be recognized are dynamically
added into the flow, leading to a retroaction loop that is difficult to
manage, both theoretically and practically.

Event Calculus

Event Calculus (EC) is a formal framework allowing events and actions
to be represented and reasoned upon in the form of an executable
logical program. It is aimed at determining time-evolved values for
logical propositions (the so-called fluents).

EC was introduced by Kowalski and Sergot in [50]. Its name is
derived from Situation Calculus; the difference between these two
frameworks being that it deals with local, rather than global, events:

Issue 15 - September 2020 - A Survey on Chronicles and Other Behaviour Detection Techniques
	 AL15-02	 4

the purpose of this change is to avoid the frame problem for the sake
of efficiency. EC claims to provide a formal analysis of the concepts
involved; i.e., events and actions. It can be expressed using Horn
clauses, to which, consistently with the logical programming founda-
tion of the approach, a notion of negation by failure is added (thus
introducing a closed-world assumption).

The founding principles of EC are the following:
•	 Events can be processed in any order, not necessarily in re-

lationship with their order of occurrence, since the past and
future are considered symmetrically;

•	 Events can be concurrent and are not necessarily punctual (an
elementary event can have a duration);

•	 Updates are possible, but only if they are additive: they can add
information but never remove information;

•	 The dates of events are not particularly relevant, whereas their
relative order is.

Many EC dialects exist, some of which allow the handling of delayed
actions or continuous state changes, such as, e.g. [58, 57], an
interval-based work built with reaction rules; these approaches are
catalogued in [54].

An interesting modular approach can be found in the EC dialect
developed by Artikis et al.: this dialect allows a low-level event to be
composed into high-level complex behaviors, using the predicates
found in Table 1 to express temporal constraints, with an underlying
linear time model. These predicates are defined relying upon axioms,
some of which may be independent from the application domain. The
formalism is quite expressive, and allows constraints, whether tem-
poral or not, to be expressed and contains a form of absence, in the
form of a situation where a given behavior must not occur within a
certain time interval [9]. High-level behaviors can be defined using
punctual events (through predicate happensAt) or fluents, initially
using predicates such as initiatedAt, holdsFor, etc.

Predicate Intuitive meaning
happensAt(E, T ) Event E occurs at time T.
initially(F = V ) Fluent F has value V at time 0.
holdsAt(F = V, T ) Fluent F has value V at time T .
holdsFor(F = V, I ) I is the list of all maximum time

intervals over which F has value V.
initiatedAt(F = V, T ) A time interval where F has value V

starts at time T.
terminatedAt(F = V, T ) A time interval where F has value V

ends at time T.
union_all(L, I ) I is the list of all maximum time

intervals resulting from the union of
all intervals in List L.

intersect_all(L, I ) I is the list of all maximum time
intervals resulting from the
intersection of all intervals in List L.

relative_complement_all(I', L, I ) I is list lt of maximum time intervals
minus each set of intervals in List L.

Table 1 - Main predicates of Event Calculus

The issue of behavior extraction and writing is studied in [13, 8].
Indeed, writing activities in the EC framework is tedious and error-
prone, hence the idea of developing an automated process to gener-
ate definitions from temporal data. Thus, the authors use a learning
method based on abductions and inductions to infer the behaviors to
be recognized.

As explained in the introduction to this article, a major issue for stream
reasoning is whether behaviors can be recognized or not in real time.
The algorithm in this EC dialect uses a system query method: the rea-
soning is not performed gradually, but rather on demand, whenever a
high-level activity is queried [10]. Thus, in order to perform an online
analysis, it is necessary to constantly make queries: without a cache,
this implies starting computations over again each time. Moreover,
one of the principles of AC is that the order in which events occur fur-
ther increases the complexity of the computation. In [28], Chittaro et
al. introduce a version of EC called Cached Event Calculus (CEC), an
implementation managing a cache memory to reduce the complexity
of the process. However, CEC has no pre-emption mechanism and
it accepts the processing of events with an earlier date than already
processed events.

Therefore, recognition times increase gradually as low-level events
occur, and after the computation becomes too time-expensive to keep
up in real time. Artikis et al. attempted to address this issue in [12],
where they introduce RTEC (Run-Time reasoning Event Calculus), an
efficient YAProlog

1 implementation of their EC. Their program is also
based on successive queries, with a cache memory preserving maxi-
mum intervals computed for the HoldsFor predicates of each fluent.

In addition, in order to address uncertainty, several stochastic
approaches of EC have been developed. Artikis et al. extended the
formalism of EC in [65] by means of Markov logical networks (MLN)
[38], combining first-order logic with the probabilistic semantics of
Markov networks. In [64] they also provided another extension, this
time to probabilistic logical programming, using Prob-Log [49]. This
way, they addressed the issue of incorrect low-level event detections
by adding confidence indices to the events in the flow. The uncertainty
here is limited to event uncertainty: in particular, it is not possible to
handle incompletely specified behaviors. Moreover, the authors admit
that online recognition is not possible in this formalism, which is cor-
roborated in a recent work by Rincé et al. [63], who showed that, for
a whole class of problems, the local search algorithms necessary in
MLN and ProbLog perform poorly due to the structural characteristics
of the problem.

Another approach for uncertainty handling is introduced in [14]. It is
orthogonal to that in [64] in the sense that they may be combined. It
relies upon the use of various event sources to determine their likeli-
hood, with an auto-adaptation system based on the behavior recogni-
tion process itself: complex behavior definitions are written to identify
the uncertainty domains and react accordingly: when the uncertainty
becomes significant, the system may ignore events over a certain
time interval, or even momentarily discard an event source. In [15],
the authors add crowdsourcing to this framework, in order to make
decisions when discrepancies between sources become significant.

ETALIS

Event-driven Transaction Logic Inference System (ETALIS)2 [5, 2] is
a CEP language, the syntax and semantics of which allow reason-
ing simultaneously on temporal assertions and on stable or evolving
knowledge (rules, facts, ontologies, encyclopedic data, etc.). Its pro-
cessing engine allows behaviors to be analyzed online.

1	 http://www.dcc.fc.up.pt/~vsc/Yap/
2	 available in open-source at http://code.google.com/p/etalis/

Issue 15 - September 2020 - A Survey on Chronicles and Other Behaviour Detection Techniques
	 AL15-02	 5

ETALIS is a logical programming language, and its syntax is defined
by rules, the main constructs of which are shown in Table 2. The
underlying time model is linear, dense, but countable (i.e., ), and
low-level events may be instantaneous events, as well as events with
a duration: events are dated by time intervals [T1, T2] (with T1 = T2 in
the case of instantaneous events). The language has a high expres-
siveness and contains:

•	 all of Allen’s 13 interval relations;
•	 constraints on event properties;
•	 a rather limited notion of absence within the framework of the

sequence;
•	 two precisely distinguished kinds of conjunction (in series and

in parallel);
•	 recursive behavior definitions, allowing, for example, the defi-

nition of a function accumulating a value over a sequence of
events.

A first formal declarative semantic approach is provided in [3, 5],
where event patterns (i.e., behaviors) are defined by induction in the
manner of model theory. A recognition is a couple (q

1 
, q

2 
), with q

1 
,

q
1
 ∈ Q delimiting the necessary and sufficient time interval for the

recognition (its support). Other than this support, in which they must
all have been encompassed, information pertaining to the events trig-
gering the recognition is not kept: there is no possibility of historiza-
tion, and multiplicity is limited to the cases in which the supports of
the multiple recognitions are distinct.

Constructs Intuitive meaning

p where t Behavior p has been recognized and the term t is
valued to true.

q This corresponds to the absolute instant q (for any
q∈).

().p q Behavior p has been recognized and lasts exactly q,
with q∈ .

1p seq 2p Behavior 1p is strictly followed (in time) by behavior
2p .

1p and 2p Behaviors 1p and 2p have been recognized, with-
out any temporal constraint.

1p par 2p Behaviors 1p and 2p have been recognized in
parallel; i.e., they overlap in time.

1p or 2p Either one of both behaviors has been recognized.

1p equals 2p Both behaviors have been recognized over the exact
same time interval.

1p meets 2p Both 1p and 2p have been recognized, and the last
recognition instant for 1p exactly matches the first
recognition instant of 2p .

1p during 2p Behavior 1p has been recognized within the recog-
nition of 2p .

1p starts 2p The recognition interval of 1p is an initial segment
of the recognition interval of 2p .

1p finishes 2p The recognition interval of 1p is a final segment of
the recognition interval of 2p .

not () []1 2 3. ,p p p Behaviors 2p and 3p have been recognized in
this order, without any occurrence of 1p strictly
contained between both in time.

Table 2 - Main constructs of ETALIS [3]

The ETALIS recognition system is implemented in Prolog. This imple-
mentation relies on an operational semantics defined using logic
programming rules. The complex behaviors to be recognized are
are broken up into intermediate events called goals. ETALIS compiles
complex behaviors into a set of rules allowing Event-Driven Backward
Chaining, which allows an online recognition process. Two types of
rules result from the compilation:

•	 rules creating the goals to be recognized, in order to progress
in the recognition of a complex behavior, in the form of an event
and the expectation of another event: goal ()1 2[,][,] [,]

1, ,T Tb a ie− − − −
means that when a (potentially complex) behavior a has been
recognized over interval []1 2,T T , the system expects an event
b to recognize behavior 1ie ;

•	 rules creating intermediate events or event patterns: these
check the database to determine whether a certain goal already
exists, and, if this is the case, trigger the event that has been
recognized by the goal: if goal ()3 4 1 2[,] [,] [,]

1, ,T T T Tb a ie − − is in the
database, then event 1 4[,]

1
T Tie is triggered and propagated if it is

an intermediate event, or is used to trigger an action if it is one
of the complex behaviors sought.

Rules of the latter type also allow goals that are obsolete and not
needed anymore to be suppressed from the database.

In other terms, the underlying recognition structure is a binary tree.
However, the equivalence of both these semantics has not been
proven.

As to recognition multiplicity, ETALIS allows the following event
consumption policies: recent, chronicle, and "free" (i.e., without any
restriction). However, the declarative aspect is lost with any policy
other than free, which means that the rule-evaluation order ceases
to be neutral.

The performance of ETALIS is also assessed on a so-called Fast
Flower Delivery use case [43].

ETALIS also handles delayed events [44] through two additional rule
types:

•	 goal_out ()3 4[,][,] [,]
1, ,T Ta b ie− − − − , expressing that Event b has

been received and that an Event a having occurred before b is
expected to finalize the recognition of 1ie .

•	 if goal_out(...) and 2 3<T T , expressing that if an event a
indeed occurs at 2 3<T T , then event []1 4,

1
T Tie is triggered.

This algorithm does not have adverse effects on the efficiency of the
recognition for events occurring on time. However, it requires a spe-
cific procedure to free memory by suppressing goal_out rules after
a while. Reference [44] explains that, due to practical reasons (prob-
ably a matter of recognition efficiency by preventing rule overload)
this functionality has not been implemented: therefore, multiplicity is
lost. To handle delayed events in the case of an absence, ETALIS also
allows the handling of revised events [4]: new rev goals are intro-
duced to suppress revised goals.

Chronicles

Chronicles are a family of formal languages developed to formally
describe an event signature and, as such, provide a framework for
CEP.

Issue 15 - September 2020 - A Survey on Chronicles and Other Behaviour Detection Techniques
	 AL15-02	 6

Dousson’s chronicles

A chronicle language was introduced in [45], and developed mainly
by Dousson et al. [39, 40, 41]. Within this framework, a chronicle is
somehow a partial order of observable events in a certain context.
Together with the language comes an efficient online recognition pro-
cess enabling the analysis of a flow of timestamped events that do not
necessarily arrive in their order of occurrence, with the possibility of
triggering actions or producing events at a date defined in relation to
the dates of the events having caused the recognition.

In [39]: a chronicle model is presented as a set of formulae or tem-
poral schemas defining how the association of several observable
events can lead to a new deduced event, and a set of constraints is
given. A chronicle is thus a set of events together with contextual and
temporal constraints. In this approach, the time model is discrete,
totally ordered, and precise enough to take into account the observed
events. In more recent works, Dousson et al. [41] associate attributes
with events that can change their values: chronicles are represented
by constraint graphs, with events as nodes, and the edges are labelled
with integer intervals that represent time constraints.

This framework has also been used and adapted by Subias and
Boufaied [18, 46] to various contexts, but always with discrete time.
In his PhD work [42], Vu D u ’o’ng applies Dousson’s work to tele-
communication network diagnosis through alarm correlation.

Here is a broad idea of how chronicles are expressed in Dousson’s
formalism. They are multi-sets of events with additional constraints
expressed as time intervals (which may contain negative values,
meaning that the events occur in reverse order than that specified)
that must be fulfilled by pairs of events. For instance (see Figure 1), a
chronicle may be A B C D where the interval between A and C must
be within [−3, 2], the interval between A and D must be within [4, 6],
and the interval between D and B must be within [−1, 4]. Each event
in the multi-set has to be mapped exactly once to an event of the flow,
and the mapping must be consistent with the constraints.

A D

C
–3

–1

2

4

4 6

B

Figure 1 - An example of Dousson’s Chronicle:
[3,2] [4,6] [1,4]

C A D B
− −

← → →

The expressivity of Dousson’s formalism is rather low. In particular,
the fact that chronicles can combine various intermediate patterns
that may or may not share elementary events cannot be expressed.
For instance, it is not possible to write a chronicle of the form
() ()&ABC DBE , that would be recognized if an event B occurs
between A and C, and an event B (possibly the same, but not nec-
essarily) occurs between D and E. This cannot be expressed in
Dousson’s formalism, where it is necessary to specify when design-
ing the chronicle whether there is a single B or two distinct B. In addi-
tion, absence is difficult to account for in Dousson’s work. Moreover,
the issue above regarding shared events between subchronicles also
applies for absence.

ONERA chronicles

In the formalism of ONERA chronicles, events are represented as
ordered pairs comprising an event name and a real number (its occur-
rence date). The underlying time model is linear and continuous.
These events can be endowed with information, called attributes,
which are ordered pairs of an attribute name and a value.

Attributes are a very expressive feature of the language: an event can
have any number of attributes and, given that recognitions are built
upon events, new attributes can be computed, named and associated
with recognitions, so as to be used at a higher level.

The chronicle language is built by induction, using, among others,
four constructs expressing the sequence, the conjunction, and the
disjunction of two behaviors, as well as the absence of a given behav-
ior during another behavior. These constructs have been presented in
[20, 21].

In addition to this, ONERA chronicles express all of Allen’s 13 rela-
tions, as well as constraints on the durations of behaviors and a few
additional constructs, such as a change of state and a derived event
associated with the instant of recognition completion. Moreover, the
chronicle language allows reasoning on event attributes: a predicate
can express desired constraints on manipulated attributes. Constraints
on attributes and attribute creations can be added at each level, and a
notion of the evaluation context allows attributes to be handled properly
in constructs where not all subchronicles are present in the recognition
of a chronicle (typically, absence and disjunction).

The notion of chronicle recognition, originally [20, 21] based on a
notion of a set of events leading to it, has therefore been replaced
by a tree-based notion: indeed, an event model set does not retain
the information specifying which event led to the recognition of
which sub-chronicle, which becomes an issue when properties are
expressed over event attributes. Consider, for example, Chronicle

= () &C A B A . Some recognitions of C may be due to two distinct
events a (a denotes an instance of A). In a set formalism, these two
events are undistinguishable, so it is impossible to determine which a
led to the recognition of sub-chronicle A B, and which led to the rec-
ognition of the single A. Not only is this information lost, but this also
affects the combinatorics, since the number of recognitions depends
on this information: if this information is kept, two events a lead to
two different recognitions of C depending on the distribution

3
.

Continuous time is managed through the use of a look-ahead function
(),CT dϕ providing a future date until which the system does not

need to be re-examined, since the recognition set would not have
changed until then. Indeed, the systems considered here are asyn-
chronous, and this function provides the next time when it will be nec-
essary to check for the completion of a given chronicle with delays.

More details on the theoretical framework of chronicle recognition are
presented in [60], but their general form is that of a triplet (), ,C P f ,
where:

•	 C∈X is a chronicle formula (see below);
•	 P∈S is a predicate symbol;
•	 (),f ∈T P  is an attribute transformation.

3	 Note that there is also one additional recognition for each event a leading to the
recognitions of both sub-chronicles.

Issue 15 - September 2020 - A Survey on Chronicles and Other Behaviour Detection Techniques
	 AL15-02	 7

X is inductively defined together with two notions of contexts, which are functions from X to P (an evaluation context e and a resulting context r):

simple event: If A∈N , then (), ,P f ∈XA , () { }, , =e A P f ◊ , et () (), , = , ,r eA P f A P f  ;

sequence: If () () { }1 2 =e eC C∩ ◊  , then (), ,P f ∈X1 2C C , () () ()1 2 1 2, , =e r rC C P f C C∪   , et () ()1 2 1 2, , = , ,r eC C P f C C P f  ;

conjunction: If () () { }1 2 =e eC C∩ ◊  , then (), ,P f ∈X1 2C & C , () () ()1 2 1 2& , , =e r rC C P f C C∪   ,
() ()1 2 1 2& , , = & , ,r eC C P f C C P f  ;

disjunction: (), ,P f ∈X1 2C C , () () ()1 2 1 2, , =e r rC C P f C C∩   , and () ()1 2 1 2, , = , ,r eC C P f C C P f  ;

absence: If () () { }1 2 =e eC C∩ ◊  , then () []()1 2C C , ,P f− ∈X , () []() () ()1 2 1 2, , =e r rC C P f C C− ∪   , and
() []() ()1 2 1, , =r rC C P f C−  ;

meets: If () () { }1 2 =e eC C∩ ◊  , then ()1 2C C , ,P f ∈Xmeets , () () ()1 2 1 2, , =e r rC C P f C C∪  meets , and
() ()1 2 1 2, , = , ,r eC C P f C C P f meets meets ;

overlaps: If () () { }1 2 =e eC C∩ ◊  , then ()1 2C C , ,P f ∈Xoverlaps , () () ()1 2 1 2, , =e r rC C P f C C∪  overlaps , and
() ()1 2 1 2, , = , ,r eC C P f C C P f overlaps overlaps ;

starts: If () () { }1 2 =e eC C∩ ◊  , then ()1 2C C , ,P f ∈Xstarts , () () ()1 2 1 2, , =e r rC C P f C C∪  starts , and
() ()1 2 1 2, , = , ,r eC C P f C C P f starts starts ;

during: If () () { }1 2 =e eC C∩ ◊  , then ()1 2C C , ,P f ∈Xduring , () () ()1 2 1 2, , =e r rC C P f C C∪  during , and
() ()1 2 1 2, , = , ,r eC C P f C C P f during during ;

finishes: If () () { }1 2 =e eC C∩ ◊  , then ()1 2C C , ,P f ∈Xfinishes , () () ()1 2 1 2, , =e r rC C P f C C∪  finishes , and
() ()1 2 1 2, , = , ,r eC C P f C C P f finishes finishes ;

equals: If () () { }1 2 =e eC C∩ ◊  , then ()1 2C C , ,P f ∈Xequals , () () ()1 2 1 2, , =e r rC C P f C C∪  equals , and
() ()1 2 1 2, , = , ,r eC C P f C C P f equals equals ;

lasts δ : If *δ +∈ , then ()1C , ,P fδ ∈Xlasts , () ()1 1, , =e rC P f Cδ lasts , and () ()1 1, , = , ,r eC P f C P fδ δ lasts lasts ;

at least δ : If *δ +∈ , then ()1C , ,P fδ ∈Xatleast , () ()1 1, , =e rC P f Cδ atleast , and () ()1 1, , = , ,r eC P f C P fδ δ atleast atleast ;

at most δ : If *δ +∈ , then ()1C , ,P fδ ∈Xatmost , () ()1 1, , =e rC P f Cδ atmost , and () ()1 1, , = , ,r eC P f C P fδ δ atmost atmost ;

then δ : If *δ +∈ , then ()1C , ,P fδ ∈Xthen , () ()1 1, , =e rC P f Cδ then , and () ()1 1, , = , ,r eC P f C P fδ δ then then ;

naming: If { }\x∈ ◊P , then ()1C x, ,P f→ ∈X , () ()1 1, , =e rC x P f C→  , () { }1 , , = ,r C x P f x→ ◊ ;

cut: If () () { }1 2 =e eC C∩ ◊  , then ()1 2C !C , ,P f ∈X , () () ()1 2 1 2! , , =e r rC C P f C C∪   , and () ()1 2 1 2! , , = ! , ,r eC C P f C C P f  ;

change of state: If () () { }1 2 =e eC C∩ ◊  , then ()1 2C !!C , ,P f ∈X , () () ()1 2 1 2!! , , =e r rC C P f C C∪   , and
() ()1 2 1 2!! , , = !! , ,r eC C P f C C P f  ;

recognition event: ()1@C , ,P f ∈X , () ()1 1@ , , =e rC P f C  , and () ()1 1@ , , =r rC P f C  .

event (),e t R∈ ∈ ∈N E event flow () ()()1 1 2 2, , , ,e t e t  such that 1i it t +<

τ , name for time elapsed attribute retrieval function a : () (),,
i ii i e te t X

event attributes P V⊂ × behavior recognition attributive set

attribute names values
()() ()(){ }
() (){ }(){
() (){ }() }

1 21 21 2

1 1.1 1.1 1.2 1.2

2 2.1 2.1 2.2 2.2

, ,, , , ,

, , , , , ,

, , , , , ,

j jj je tj e tj

j j j j j

j j

r

j j j

p X p X

p p p

p p

X

p

υ υ

υ υ

=

=

=





 

event attributes set

() () (){ }1 1 2 2, , , , ,i i i ie t p v p vX = 

Figure 2 - Events and attributes for chronicles

Issue 15 - September 2020 - A Survey on Chronicles and Other Behaviour Detection Techniques
	 AL15-02	 8

Chronicles allow for multiplicity and historization of recognitions. They
also allow the gradual recognition of behaviors in real time, as events
flow. The need for multiplicity and historization prevents the use of
simple finite-state automata (see [17]), but a first recognition tool
called Chronicle Recognition System (CRS/ONERA) was developed at
ONERA in the late 1990s in [19], based on duplicating automata so
as to comply with performance and inter- operability requirements. A
colored Petri net model was also developed, implementing chronicle
recognition for the initial operators – sequence, conjunction, disjunc-
tion, and absence – and its adequacy has been proven (see [23, 21]).
A new recognition tool has also been developed in the form of a C++
library called Chronicle Recognition Library (CRL)

4
, which can be eas-

ily used for real-world critical applications. Its algorithms are directly
based on the formal semantics of the chronicle language, therefore the
recognitions produced by CRL are considered t be adequate by con-
struction. The efficiency of CRL is also ensured by a validity window
mechanism that eliminates obsolete initiated recognitions after a time
specified by the user. Applications of CRL are presented in [24, 22].

Other approaches

Other families of approaches to stream reasoning are at the two far
ends of the spectrum of SR techniques: DSMS and KRR. We illustrate
them in this section through two representative examples: CQL (a DSMS
framework) and LARS (based on KRR and answer set programming).

Continuous Query Language

Continuous Query Language (CQL) [6, 7] is a language based on the
database query language SQL, extended with streams as additional
data sources. In CQL, a stream is viewed as a bag of elements in the
form ,c t , where c is a tuple and t is a timestamp; a relation maps
timestamps to bags of tuples. To make these concepts compatible,
the operational semantics of CQL relies on three kinds of operators:

•	 Relation-to-Relation operators contain usual SQL operators to
manipulate relations;

•	 Stream-to-Relation operators apply window functions to the in-
put stream to create a relation for recent tuples;

•	 Relation-to-Stream operators translate back a relation into a
stream for the output of continuous queries.

There are interesting parallels between CQL and our approach; in par-
ticular, the fact that CQL has operational semantics where evaluation
is performed stepwise as a query is evaluated. However, being based
on SQL-like queries, CQL handles the stream by filtering, joining
and aggregating data in a deterministic way, and does not allow for
abstractions, constraints, complex negation, and non-determinism.

Compared to CQL, our approach allows additional abstraction and
reasoning features, including the absence (which is a form of complex
negation) and temporal modalities. Both features are particularly impor-
tant in our approach, as evidenced by the various levels of reasoning
in aerospace case studies that we have treated (cf. Table 5.9 in [60]):
indeed, intermediate (i.e., Level-2) and interest (i.e., Level-3) chron-
icles contain temporal modalities (e.g., at least, @, and !! in Level-2
chronicles, as well as in Level-3 chronicle NoClearanceToTakeOff(ID),

4	 CRL has been deposited at the French Agency for Program Protection and is
available under the GNU LGPL license.

as well as absences with additional correlations to event attributes;
e.g., Level-3 chronicle NoFrequencyToTakeOff(ID).

LARS

LARS [16] consists of two languages: LARS formulae extend propo-
sitional logic with generic window operators and additional controls
to handle temporal information, and, on top of this, LARS programs
extend Answer Set Programming (ASP) with rich stream-reasoning
capabilities. It is aimed at targeting AI applications in a streaming con-
text, such as diagnosis, configuration, or planning.

Fragments of LARS have been implemented in several experimental
prototypes [16], based on different realization principles, but they
either lack efficiency or are restricted to specific LARS programs, in
particular with restrictions on the use of negations.

In contrast to chronicles, LARS semantics is based on time points.
Nevertheless, as stated in [16], when comparing LARS and ETALIS,
it is possible to represent intervals in LARS and thus partially cap-
ture the notion. However, this representation is unable to take into
account overlapping intervals (for a same formula): indeed, LARS
assigns atoms to a single timeline by an evaluation function, so it can
encode intervals only by assigning atoms to consecutive time points.
Adjacent or overlapping intervals for the same atom cannot be distin-
guished and, worse still, merge into a single larger interval, which is
incompatible with our objective of multiple recognitions.

An application to aeronautics

To illustrate the interest of these techniques in the aeronautic field, we
present an example of a hypothetical unmanned aircraft inserted into
general air traffic, as described in Figure 3.

This is a global problem that raises many interesting issues, and implies
interactions between the aircraft, its pilot (on the ground) and Air Traffic
Control (ATC). We focus here on a potential hazard, which is the loss of
the telecommand (TC) link, meaning that the pilot is unable to transmit
orders to the unmanned aircraft. In such a case, there has to be a pre-
determined course of action (e.g., return to base, pursue current route,
land at the nearest airport, etc., – which one exactly is not relevant here).
If such a loss occurs, it is obviously important that all three agents
(ATC, pilot, and aircraft) share the same understanding of the situa-
tion, so that, in particular, both of the human actors act consistently.

UA

ATC RPS

Voice

Voice

Telecommand
& Voice

Voice &
Telemetry

Figure 3 - Schematic representation of the three-agent system

Issue 15 - September 2020 - A Survey on Chronicles and Other Behaviour Detection Techniques
	 AL15-02	 9

UAS incontrolled air space

UAS
RPS

[RPS TC]

[RPS-ATC connection]

[ATC code]

[ATC Voice]

[RPS Voice]

[UA TC]

[UA Code]

[UA Pilot]

UA

ATC

RPS_TC_nominal

UA_TC_nominal

Nominal_Code

UA_Nominal_Flight

[in TC
unrecovered]

[in UA
Nominal TC]

XX minutes
/TM confirms
rerouting

RPS
decides
end
rerouting
[in UA
Nominal
TC &
in RPS
Nominal
TC]

UA_Transitory_Mode

UA_Rerouting_Mode

Code_7700

Code to 7600 [in UA Nominal TC]
/ATC change code to 7600

[in TC unrecovered]
/ATC change code to 7700

Code_7600

[in TC un-
recovered]
/ATC
change
code to
7700

[in RPS
long TC
recovery
procedure]

ATC to RPS:
confirm
ZZ00 code ?
[in RPS
Nominal
Voice]

[in RPS
Nominal TC]

[in RPS
Nominal
TC]

[in RPS
TC lost]

[in RPS TC Nominal]
/Code to nominal

[in RPS TC
Nominal]
/Code to 7600

[in RPS Nominal TC & in Code 7700]
/Code to 7600

[in RPS TC
lost]

[in UA
Nominal TC
& in RPS
Nominal
Voice]
/ATC back
to nominal
code

Code to
nominal
[in UA
TC
Nominal]
/ATC back
to nominal
code

Code to
7600 [in
UA TC
Nominal]
/ATC
change
code to
7600

UA_TC_Unrecovered

UA_TC_lost

UA_TC_Quick_Recovery_Procedure

RPS TC lost

RPS_TC_Quick_Recovery_Procedure

RPS_TC_Long_Recovery_Procedure

ATC_Nominal_For_RPS ATC_Nominal_Service

ATC_Urgency_To_Be_Confirmed

ATC_Rerouting_Mode_Not_Selected

ATC_Rerouting_Mode_Inferred

ATC_Nominal_Code

ATC_Nominal_Voice

ATC_Lost_Voice

ATC_7700_Code ATC_7600_Code

ATC_Rerouting_Mode_Confirmed

Urgency Service

[in ATC 7700 code]

[in ATC Nominal Voice]
/ATC to RPS: confirm
7700 code

RPS to ATC:
select rerouting
mode [in ATC
Nominal Voice]

ATC
back to
nominal
code

ATC
back to
nominal
code

ATC change
code to
7700

ATC change
code to
7600

ATC change code to 7600

ATC change code to 7700

RPS to ATC:
select rerouting
mode [in ATC
Nominal Voice]

[in
ATC
lost
voice]

RPS_Nominal_Voice

RPS_Voice_Recovery_Procedure

RPS Lost Voice

RPS_Voice_Unrecovered

Need_Contact_ATC_Urgency

Checking_TC

ATC_Contacted_Urgency

Need_Contact_ATC_Invalidation_Urgency

Need_Contact_ATC_End_Urgency

TM confirms rerouting [in RPS
Nominal Voice]
/RPS to ATC: select rerouting
mode

TC failure
for RPS

TC failure
for UA

TC back
for RPS

TC back
for UA

RPS to ATC:
urgency mode
[in RPS Nominal
Voice]

RPS to ATC:
nominal mode
[in RPS
Nominal Voice]

Voice failure
for RPS

Voice back for RPS

NN minutes

RPS to ATC:
nominal mode
[in RPS
Nominal Voice]

UU minutes
[in RPS TC
lost]

RPS to
ATC:
nominal
mode
[in ATC
Nominal
Voice]

RPS to
ATC:
urgency
mode
[in ATC
Nominal
Voice]

TT minutes

XX minutes

Voice failure
for ATC

Voice back
for ATC

RPS to ATC:
urgency
mode [in
ATC Nominal
Voice]

RPS to
ATC:
nominal
mode [in
ATC Nominal
Code & in
ATC Nominal
Voice]

UU minutes
[in RPS
Nominal
TC]

ZZ
minutes

YY minutes

Figure 4 - State diagram of telecommand loss

Issue 15 - September 2020 - A Survey on Chronicles and Other Behaviour Detection Techniques
	 AL15-02	 10

However, each actor has access only to a partial sub-
set of information, from which they deduce the status of
the TC link. Hence, their reasoning can be modelled through
chronicles and this can be used to detect inconsistencies.

Here, low-level observable events will schematically be the actions
performed by each agent on the system or their changes of state,
which are modelled according the state diagram in Figure 4 represent-
ing the protocol followed by each agent. The diagram is distributed
between the three agents: UA (Unmanned Aircraft), RPS (Remote
Pilot Station), ATC. Each agent is broken down into sub-systems. A
sub-system represents a functionality controlled by the agent, or a
specific knowledge that it may possess about the overall system situ-
ation; e.g., the RPS Voice sub-system describes whether the RPS is
aware of a potential radio communication loss. Each sub-system is a
set of states that have to be followed in a specific order regarding the
system evolution. Arrows between states describe this order and the
necessary conditions to trigger a state change, and may possibly be
associated with a specific action to be performed by the agent. This
information is labelled on the arrows in three different parts: event,
condition and action, and written event [condition]/action.

The formalism can then be used to detect undesired behaviors, such as:
•	 Incoherent ATC Voice: the transponder code emitted by the UA

starts indicating code 7600 to Air Traffic Control, which means
that there is a voice failure, but the controller has not realized
this, and this is expressed by the fact that the diagram does not
switch to ATC Lost Voice.

•	 Incoherent flight mode UA/ATC: after a fault that has been
solved, the UA has switched back to a nominal flight but ATC
remains in an urgency service.

Once one of these behaviors is detected, its origins have to be deter-
mined. If the cause is due to faulty behavioral guidelines, then the
model has to be corrected, and, otherwise, if the source is human,
it should be planned to trigger alarms warning the pilot and/or the air
traffic controller of the situation.

These behaviors are represented by the following chronicles:
•	 Incoherent ATC Voice

(to_ATC_Nominal_Code to_ATC_7600_Code then 5) − [to_
ATC_Lost_Voice]

•	 Incoherent flight mode UA/ATC
(from_UA_Nominal_Flight

((to_UA_Nominal_Flight then 10) − [from_UA_
Nominal_Flight]))

−[to_ATC_Nominal_Service]

The possibility, once a hazardous behavior has been recognized, of
determining its origin is provided by the properties of the chronicle
framework.

Conclusion

While no single Stream-Reasoning approach can claim to be able to
tackle all possible uses of Stream Reasoning, the overview of meth-
ods presented in this paper shows that handling a rapidly changing
dynamic dataflow with elaborate reasoning is now feasible. These
methods find applications in a very broad spectrum, which includes:

•	 the detection of inconsistencies between pilot and air traffic
control in a scenario where an unmanned aircraft may lose its
telecommand [24] (see above), with chronicles;

•	 the supervision and analysis of hazardous situations using an
unmanned aircraft to assist police services [47, 35, 36, 34],
with chronicles;

•	 various medical applications, including heart monitoring [30, 25,
62, 37, 61, 27], using chronicles together with learning techniques;

•	 management of alarms for the detection of cyber-intrusions
[56], with Dousson’s chronicles;

•	 Web-service diagnostics [59, 31, 52], with chronicles;
•	 public transportation quality assessment [48, 68], with EC

(project PRONTO);
•	 video-surveillance [66, 13, 11, 9], with EC (project CAVIAR);
•	 social media analysis [66];
•	 assistance in decision-making during air combat [29], with

chronicles;
•	 network supervision and monitoring management[67], with

chronicles;
•	 supervision of a gas turbine in a petrochemical plant [55] and

supervision of a milk factory [53], with chronicles;
•	 characterization of human activities [32], with chronicles 

References

[1]	 J. F. Allen - Maintaining Knowledge about Temporal Intervals. Commun. ACM, Pages 832-843, 1983.

[2]	 D. Anicic - Event Processing and Stream Reasoning with ETALIS. PhD thesis, Karlsruhe Institute of Technology, 2011.

[3]	 D. Anicic, P. Fodor, S. Rudolph, R. Stühmer, N. Stojanovic, R. Studer - A Rule-Based Language for Complex Event Processing and Reasoning.
Proceedings of the Fourth International Conference on Web Reasoning and Rule Systems (RR 2010), Pages 42-57. Springer, 2010.

[4]	 D. Anicic, S. Rudolph, P. Fodor, N. Stojanovic - Retractable Complex Event Processing and Stream Reasoning. Proceedings of the 5th International
Conference on Rule-Based Reasoning, Programming, and Applications, Pages 122-137. Springer, 2011.

[5]	 D. Anicic, S. Rudolph, P. Fodor, N. Stojanovic - Real-Time Complex Event Recognition and Reasoning – A Logic Programming Approach. Applied
Artificial Intelligence, 26(1-2):6-57, 2012.

[6]	 A. Arasu, S. Babu, J. Widom - Cql: A Language for Continuous Queries over Streams and Relations. International Workshop on Database Programming
Languages, Pages 1-19. Springer, 2003.

[7]	 A. Arasu, S. Babu, J. Widom - The cql Continuous Query Language: Semantic Foundations and Query Execution. The VLDB Journal, 15(2):121-142, 2006.

[8]	 A. Artikis, O. Etzion, Z. Feldman, F. Fournier - Event Processing under Uncertainty. Proceedings of the 6th ACM International Conference on
Distributed Event-Based Systems, Pages 32-43. ACM, 2012.

[9]	 A. Artikis, G. Paliouras - Behaviour Recognition Using the Event Calculus. Artificial Intelligence Applications and Innovations III, Pages 469-478. Springer, 2009.

Issue 15 - September 2020 - A Survey on Chronicles and Other Behaviour Detection Techniques
	 AL15-02	 11

[10]	 A. Artikis, G. Paliouras, F. Portet, A. Skarlatidis - Logic-Based Representation, Reasoning and Machine Learning for Event Recognition.
Proceedings of the Fourth ACM International Conference on Distributed Event-Based Systems. ACM, 2010.

[11]	 A. Artikis, M. Sergot, G. Paliouras - A Logic Programming Approach to Activity Recognition. Proceedings of the 2nd ACM International Workshop
on Events in Multimedia, Pages 3-8. ACM, 2010.

[12]	 A. Artikis, M. Sergot, G. Paliouras - Run-Time Composite Event Recognition. Proceedings of the 6th ACM International Conference on Distributed
Event-Based Systems, Pages 69-80. ACM, 2012.

[13]	 A. Artikis, A. Skarlatidis, G. Paliouras - Behaviour Recognition from Video Content: A Logic Programming Approach. International Journal on
Artificial Intelligence Tools, 19(02):193-209, 2010.

[14]	 A. Artikis, M. Weidlich, A. Gal, V. Kalogeraki, D. Gunopulos - Self-Adaptive Event Recognition for Intelligent Transport Management. Big Data,
2013 IEEE International Conference on, Pages 319-325. IEEE, 2013.

[15]	 A. Artikis, M. Weidlich, F. Schnitzler, I. Boutsis, T. Liebig, N. Piatkowski, C. Bockermann, K. Morik, V. Kalogeraki, J. Marecek, et al. -
Heterogeneous Stream Processing and Crowdsourcing for Urban Traffic Management. Proceedings of the 17th International Conference on Extending
Database Technology (EDBT 2014). Athens, Greece, 2014.

[16]	 H. Beck, M. Dao-Tran, T. Eiter - LARS: A Logic-Based Framework for Analytic Reasoning over Streams. Artificial Intelligence, Pages 16-70, 2018.

[17]	 O. Bertrand, P. Carle, C. Choppy - Chronicle Modelling Using Automata and Coloured Petri Nets. 18th International Workshop on Principles of
Diagnosis (DX-07), Pages 229-234, 2007.

[18]	 A. Boufaied, A. Subias, M. Combacau - Détection distribuée par reconnaissance floue de chroniques. Journal Européen des Systèmes Automatisés,
40(2):233-259, 2006.

[19]	 P. Carle, P. Benhamou, F.-X. Dolbeau, M. Ornato - La reconnaissance d’intentions comme dynamique des organisations. 6èmes Journées
Francophones pour l’Intelligence Artificielle Distribuée et les Systèmes Multi-Agents (JFIADSMA’98), 1998.

[20]	 P. Carle, C. Choppy, R. Kervarc - Behaviour Recognition using Chronicles. Proc. 5th IEEE International Symposium on Theoretical Aspects of
Software Engineering, Pages 100-107, 2011.

[21]	 P. Carle, C. Choppy, R. Kervarc, A. Piel - Behavioural Analysis for Distributed Simulations. 19th Asia-Pacific Software Engineering Conference (APSEC), 2012.

[22]	 P. Carle, C. Choppy, R. Kervarc, A. Piel - Handling Breakdowns in Unmanned Aircraft Systems. 18th International Symposium on Formal Methods
(FM) - Doctoral Symposium, 2012.

[23]	 P. Carle, C. Choppy, R. Kervarc, A. Piel - A Formal Coloured Petri Net Model for Hazard Detection in Large Event Flows. 20th Asia-Pacific Software
Engineering Conference (APSEC), 2013.

[24]	 P. Carle, C. Choppy, R. Kervarc, A. Piel - Safety of Unmanned Aircraft Systems Facing Multiple Breakdowns. 1st French Singaporean Workshop on
Formal Methods and Applications (FSFMA), 2013.

[25]	 G. Carrault, M.-O. Cordier, R. Quiniou, F. Wang - Temporal Abstraction and Inductive Logic Programming for Arrhythmia Recognition From
Electrocardiograms. Artificial Intelligence in Medicine, 28(3):231-263, 2003.

[26]	 Z. Chaochen, C. A. R. Hoare, A. P. Ravn - A Calculus of Durations. Information Processing Letters, 40(5):269-276, 1991.

[27]	 L. Chittaro, M. Dojat - Using a General Theory of Time and Change in Patient Monitoring: Experiment and Evaluation. Computers in Biology and
Medicine, 27(5):435-452, 1997.

[28]	 L. Chittaro, A. Montanari - Efficient Temporal Reasoning in the Cached Event Calculus. Computational Intelligence, 12(3):359-382, 1996.

[29]	 S. Coradeschi, T. Vidal - Accounting for Temporal Evolutions in Highly Reactive Decision-Making. Fifth IEEE International Workshop on Temporal
Representation and Reasoning, Pages 3-10, 1998.

[30]	 M.-O. Cordier, C. Dousson - Alarm Driven Monitoring Based on Chronicles. 4th SafeProcess, Pages 286-291, 2000.

[31]	 M.-O. Cordier, X. Le Guillou, S. Robin, L. Rozé, T. Vidal - Distributed Chronicles for On-line Diagnosis of Web Services. 18th International
Workshop on Principles of Diagnosis (DX-07), Pages 37-44, 2007.

[32]	 D. Cram, B. Mathern, A. Mille - A Complete Chronicle Discovery Approach: Application to Activity Analysis. Expert Systems, 29(4):321-346, 2012.

[33]	 G. Cugola, A. Margara - Processing Flows of Information: From Data Stream to Complex Event Processing. ACM Computing Surveys (CSUR), 44(3):15, 2012.

[34]	 P. Doherty, G. Granlund, K. Kuchcinski, E. Sandewall, K. Nordberg, E. Skarman, J. Wiklund - The Witas Unmanned Aerial Vehicle Project.
ECAI, Pages 747-755, 2000.

[35]	 P. Doherty, J. Kvarnström, F. Heintz - A Temporal Logic-Based Planning and Execution Monitoring Framework for Unmanned Aircraft Systems.
6th International Conference on Recent Advances in Intrusion Detection (RAID’03), 2009.

[36]	 P. Doherty, J. Kvarnström, F. Heintz - A Temporal Logic-Based Planning and Execution Monitoring Framework for Unmanned Aircraft Systems.
Autonomous Agents and Multi-Agent Systems, Pages 332-377, 2009.

[37]	 M. Dojat - Realistic Model for Temporal Reasoning in Real-Time Patient Monitoring. Applied Artificial Intelligence, 10(2):121-144, 1996.

[38]	 P. Domingos, D. Lowd - Markov Logic: An Interface Layer for Artificial Intelligence. Synthesis Lectures on Artificial Intelligence and Machine Learning,
3(1):1-155, 2009.

[39]	 C. Dousson, P. Gaborit, M. Ghallab - Situation Recognition: Representation and Algorithms. International Joint Conference on Artificial Intelligence
(IJCAI), Pages 166-172, 1993.

[40]	 C. Dousson - Extending and Unifying Chronicle Representation with Event Counters. Proceedings of the 15th European Conference on Artificial
Intelligence, ECAI’2002, Lyon, France, July 2002, Pages 257-261, 2002.

[41]	 C. Dousson, P. Le Maigat - Chronicle Recognition Improvement Using Temporal Focusing and Hierarchization. Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), Pages 324-329, 2007.

[42]	 T. Vu Du’o’ng - Découverte de chroniques à partir de journaux d’alarmes, application à la supervision de réseaux de télécommunications. PhD thesis,
Institut National Polytechnique de Toulouse, 2001.

Issue 15 - September 2020 - A Survey on Chronicles and Other Behaviour Detection Techniques
	 AL15-02	 12

[43]	 O. Etzion, P. Niblett - Event Processing in Action. Manning Publications Co., 2010.

[44]	 P. Fodor, D. Anicic, S. Rudolph - Results on Out-of-Order Event Processing. Proceedings of the 13th International Conference on Practical Aspects
of Declarative Languages, Pages 220-234. Springer, 2011.

[45]	 M. Ghallab - On Chronicles: Representation, On-Line Recognition and Learning. KR, Pages 597-606, 1996.

[46]	 H.-E. Gougam, A. Subias, Y. Pencolé - Timed Diagnosability Analysis Based on Chronicles. 8th IFAC International Symposium on Fault Detection,
Supervision and Safety of Technical Processes SAFEPROCESS’2012, Pages 1256-1261, 2012.

[47]	 F. Heintz - Chronicle Recognition in the WITAS UAV Project, a Preliminary Report. Swedish AI Society Workshop (SAIS2001), 2001.

[48]	 P. Kaarela, M. Varjola, L. P. J. J. Noldus, A. Artikis - Pronto: Support for Real-Time Decision Making. Proceedings of the 5th ACM International
Conference on Distributed Event-Based System, Pages 11-14. ACM, 2011.

[49]	 A. Kimmig, B. Demoen, L. De Raedt, V. Santos Costa, R. Rocha - On the Implementation of the Probabilistic Logic Programming Language
Problog. Theory and Practice of Logic Programming, 11(2-3):235-262, 2011.

[50]	 R. Kowalski, M. Sergot - A Logic-Based Calculus of Events. New Generation Computing, 4(1):67-95, 1986.

[51]	 K. Kumar, A. Mukerjee - Temporal Event Conceptualization. Proceedings of the Tenth IJCAI Conference, 1987.

[52]	 X. Le Guillou, M.-O. Cordier, S. Robin, L. Rozé, et al. - Chronicles for On-Line Diagnosis of Distributed Systems. Proceedings of the European
Conference on Artificial Intelligence (ECAI), Pages 194–198, 2008.

[53]	 A. MÕhalla, E. Craye, S. C. Dutilleul, M. Benrejeb - Monitoring of a Milk Manufacturing Workshop Using Chronicle and Fault Tree Approaches.
Studies inInformatics and Control, 19(4):377-390, 2010.

[54]	 R. Miller, M. Shanahan - The Event Calculus in Classical Logic – Alternative Axiomatizations. Electronic Transactions on Artificial Intelligence
(http://www.etaij.org), 4, 1999.

[55]	 R. Milne, C. Nicol, M. Ghallab, L. Trave-Massuyes, K. Bousson, C. Dousson, J. Quevedo, J.Aguilar, A. Guasch - TIGER: Real-Time
Situation Assessment of Dynamic Systems. Intelligent Systems Engineering, 3(3):103-124, 1994.

[56]	 B. Morin, H. Debar - Correlation on Intrusion: An Application of Chronicles. 6th International Conference on Recent Advances in Intrusion Detection
(RAID’03), Pages 94-112. Springer, 2003.

[57]	 A. Paschke, M. Bichler - Knowledge Representation Concepts for Automated Sla Management. Decision Support Systems, 46(1):187-205, 2008.

[58]	 A. Paschke, A. Kozlenkov, H. Boley - A Homogeneous Reaction Rule Language for Complex Event Processing. Workshop on Event driven
Architecture, Processing and Systems, 2007.

[59]	 Y. Pencolé, A. Subias - A Chronicle-Based Diagnosability Approach for Discrete Timed-Event Systems: Application to Web-Services. Journal of
Universal Computer Science, 15(17):3246-3272, 2009.

[60]	 A. Piel - Reconnaissance de comportements complexes par traitement en ligne de flux d’évènements. PhD thesis, Université Paris 13 / ONERA, 2014.

[61]	 F. Portet - Pilotage d’algorithmes pour la reconnaissance en ligne d’arythmies cardiaques. PhD thesis, Université Rennes 1, 2005.

[62]	 R. Quiniou, L. Callens, G. Carrault, M.-O. Cordier, E. Fromont, P. Mabo, F. Portet - Intelligent Adaptive Monitoring for Cardiac Surveillance.
Computational Intelligence in Healthcare 4, Pages 329-346. Springer, 2010.

[63]	 R. Rincé, R. Kervarc, P. Leray - On the Use of WalkSAT-Based Algorithms for MLN Inference in Some Realistic Applications. Proceedings of the 30th
International Conference on Industrial, Engineering, and Other Applications of Applied Intelligent Systems, Pages 121-131, 2017.

[64]	 A. Skarlatidis, A. Artikis, J. Filippou, G. Paliouras - A Probabilistic Logic Programming Event Calculus. Journal of Theory and Practice of Logic
Programming (TPLP), 15(2):213-245, 2015.

[65]	 A. Skarlatidis, G. Paliouras, G. A. Vouros, A. Artikis - Probabilistic Event Calculus based on Markov Logic Networks. 5th International Conference
on Rule-Based Modeling and Computing on the Semantic Web, Pages 155-170. Springer, 2011.

[66]	 N. Stojanovic, A. Artikis - On Complex Event Processing for Real-Time Situational Awareness. 5th International Conference on Rule-Based Reasoning,
Programming, and Applications, Pages 114-121. Springer, 2011.

[67]	 A. Subias, E. Exposito, C. Chassot, L. Trave-Massuyes, K. Drira - Self-Adapting Strategies Guided by Diagnosis and Situation Assessment in
Collaborative Communicating Systems. 21st International Workshop on Principles of Diagnosis (DX 10), Pages 329-336, 2010.

[68]	 M. Varjola, J. Loffler - Pronto: Event Recognition for Public Transport. 17th ITS World Congress, 2010.

[69]	 K. Walzer, M. Groch, T. Breddin - Time to the Rescue - Supporting Temporal Reasoning in the Rete Algorithm for Complex Event Processing.
Database and Expert Systems Applications, Pages 635-642. Springer, 2008.

Ariane Piel graduated from Université Paris 13 in 2014 where she
received her Ph.D. in computer science. She also holds a M.Sc.
in mathematical logic and foundations of computer science. From
2011 to 2016, she was a Ph.D. student and then a post-doctoral
researcher at ONERA – The French Aerospace Lab, in the Depart-

ment for System Design and Performance Evaluation. Since 2016, she has been
a full-time research fellow at CEA-LIST. Her research interests are focused on
logic and formal methods for the conception and evaluation of systems.

AUTHORS

Romain Kervarc graduated from the École Normale Supé
rieure de Lyon and obtained a Ph.D. in formal logic in 2007.
Since then, he has been a full-time researcher at Onera,
where he is the head of research unit "Modelling and Engineer-
ing of Distributed Systems and Software". His research inter-

ests include system modelling, formal methods, complex event processing,
temporal logic and mixed logical and stochastic approaches, with a particular
focus on the application of such method to actual industrial systems.

