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This paper is devoted to the presention of a selection of time integration 
methods used in the Onera elsA and Cedre software dedicated to the re-

solution of the compressible Navier-Stokes equations. The selected methods 
are given in the framework of steady and unsteady flow simulations. Empha-
sis is put on methods for the resolution of algebraic systems associated with 
time integration methods for space-discretized equations.

Introduction 

Onera is developing two new-generation computational programs for 
the solution of the compressible Navier-Stokes equations, elsA and 
Cedre. elsA is more particularly dedicated to the aerodynamics of 
the flows and Cedre is well adapted to fluid mechanics phenomena in 
energetics. Both codes are based on similar time integration methods, 
which allows a unified presentation of the schemes used. We consider 
here a formulation where the time discretization is separated from the 
space one. The choice of a time integration algorithm is an essential 
criterion to ensure efficiency and robustness of numerical simulations 
and depends on the nature of the flow to compute. In this paper, we 
are going to classify the methods as steady or unsteady flow.
After space discretization, a system of ordinary differential equations 
is obtained and a large number of methods are available for the so-
lution this system. Two important families of time integration are de-
veloped in our codes. The first one is the family of Runge-Kutta mul-
tistage methods and the second one is the family of multi step ones. 
Only these last ones are investigated in this paper. In the framework 
of stationary flows, we are interested in the theme of linearization 
and techniques of approximate factorization. The linear algebraic sys-
tem is solved by iterative methods, direct methods being prohibitive 
in terms of memory requirements. A very large number of iterative 
methods are available in the literature. A presentation of the two main 
methods implemented in elsA (LU Relaxation) or Cedre (GMRES re-
solution) is done. The convergence acceleration techniques based on 
multigrid methods that have been used at Onera for many years for 
block-structured meshes are also presented.

In the framework of unsteady flow calculations, a dual time-stepping 
approach in which a steady state with respect to the dual time is ap-

proximately reached at each physical time-step is described. Calcula-
tion between two physical instants leads to the resolution of a system 
of pseudo-unsteady equations in dual time and is carried out using 
convergence acceleration techniques developed within the framework 
of the steady problems (multi-grid method, local time step, implicit 
phase with respect to dual time).

ODE system

The purpose of this paper is to present the time integration of the flow 
equations for numerical simulations of compressible flows as used 
in the Cedre or Elsa software [19],[6]. We shall describe here only 
some of the present methods in this software. We are interested in 
laminar or turbulent flows as as well as in reacting flows. The gover-
ning equations are solved in their integral conservation law form using 
a cell-centered finite volume formulation.

Let hΩ  be a polygonal approximation of the physical domain 
Ω⊂  Rd (d=1,2,3) made of non-overlapping and non-empty polyhe-
dra. The set of the faces of a polyhedron K is denoted by K∂  and for 
each face on K , ,

d
e Kn R∈  represents the outward unit normal to 

the face  e . Given a face e of K , eK  is the unique polyhedra in hΩ  
which shares the same face e  with K . Discretizing the conservation 
equations in hΩ  leads to 

( ) ( ) ( ), .c v
K K K

W dV F W F W W n dS T W dV
t ∂

∂
+ − ∇ =  ∂∫ ∫ ∫  (1)

where W  represents the state vector of conservative variables, cF  
and vF  are respectively the convective and diffusive fluxes and T  
is the source term. The fluxes are discretized in space using some 
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suitable approximation. The convective flux is discretized for example 
with flux vector or difference splitting schemes, or space centered 
scheme plus artificial dissipation. A central differencing is generally 
used for the viscous terms. The source term is evaluated using va-
riables at cell centres.
We obtain a system of ordinary differential equations, the so-called 
semi-discrete problem:

( ) 0K K
d W K R
dt

+ =  (2)

where KR  denotes the residual vector and is defined by 

( )
e e

e e

K K K c v KK
K K

R R T K F F T K∂ ∂
∂ ∂

= − = − −∑ ∑  (3)

If all the mesh point values KW  are gathered in a column vector U , 
the system can be rewritten

( ) 0d M U R U
dt

+ =  (4)

In the general ALE case, M  depends on time, ( )M M t= . In finite 
volumes on a motionless mesh, M  is typically a constant diagonal 
or block diagonal matrix. For simplicity, most methods will be descri-
bed in this particular case.

Time discretization

Explicit and implicit methods

Both explicit and implicit methods are available to integrate the sys-
tem (4) numerically. The choice of a time integration algorithm is an 
essential criterion to ensure efficiency and robustness of numerical 
simulations and depends on the nature of the flow to be computed. 
For a general system of ordinary differential equations, ( )R U  is a 
non-linear function of U . To compute stationary flows, a first-order 
accurate implicit Euler method is often chosen since time accuracy is 
not required to reach steady state. On the other hand, fast unsteady 
flows involving high frequency phenomena require explicit time inte-
gration of Runge-Kutta type, for example [10], and do not allow the 
use of large time steps. For slow unsteady problems, the numerical 
cost of an unsteady cycle is strongly reduced by the use of implicit 
methods of integration in time, increasing the numerical stability do-
main of the schemes and thus allowing the use of large time steps. 
The difference between explicit and implicit time integration scheme 
is the time step at which the residual vector R is evaluated.

Multistep Method

Two important families of time integration methods are developed 
in our codes. The first one is the family of Runge-Kutta multistage 
methods which allow high orders in time and are explicit. The reader 
is referred to [11] for details. Another important family of time integra-
tion methods is the family of multi step methods, which allow implicit 
time integration options. The high accuracy can then be achieved by 
involving multiple time steps. In this framework, we can introduce the 
particular two-step method (three time levels) in the following form:

( ) ( )

( )

1 1

1 1

1 1 2

1

n n n

n n n

U U U
M

t
R R R

ξ ξ ξ

θ θ ϕ ϕ

+ −

+ −

 + − + +  =
∆

 − + − + − 

 (5)

The incremental form is written:

( )
( )

1
1 1

1
1

n n
n n n

U U
M R R R

t
ξ ξ

θ θ ϕ ϕ
−

+ −
 + ∆ − ∆   = − + − + − ∆

 (6)

with 1n n nU U U+∆ = − . ,θ ξ  and ϕ  are three parameters allowing 
control respectively of the implicitness of the method, the order of the 
finite difference of dU dt  and the number of time levels for R . In 
our context, we mainly applied the particular schemes with 0ϕ = . 
In this case, it can be shown that the schemes are second order ac-
curate for 1 2ξ θ= − . For 0ξ =  and 1/ 2θ = , the resulting scheme 
is known as the Crank-Nicholson method and is therefore second-
order accurate in time.

Classic explicit time integration ( 0θ = ) may be written as

( ) 11 n n
nU U

M R
t

ξ ξ −+ ∆ − ∆
= −

∆
 (7)

where R  is evaluated at time step n .

Methods for steady flows 

The theme of linearization and approximate factorization for the deve-
lopment of implicit methods for compressible Navier-Stokes equation 
solution has been tackled by many authors. The reader can refer to 
the retrospective overview by Briley and Mac Donald [5] for more 
details.

Approximate Jacobian linearizations

In this chapter, we are mainly interested in the numerical simulation 
of steady flow.

If 0θ ≠ , 1 1( )n nR R U+ +=  is evaluated using a Jacobian linearization 
around the state nU  thanks to a second order Taylor expansion,

( )1 2 .n n n n nRR R R R U U
U

+ ∂
= +∆ = + ∆ +Ο ∆

∂
 (8)

Up to second order,

( )1n n n nRR R U U
U

+ ∂
= + ∆

∂
 (9)

and the equation (6) becomes

( ) ( )1

1

1

.

n
n n n n

n

RM U R t R R
t U

M U
t

ξ
θ ϕ

ξ

−

−

 +  ∂  + ∆ =− + ∆ −    ∆ ∂   

+ ∆
∆

 

 (10)

With the exception of nU∆ , all the quantities are known at time 
step n .

The left-hand side of (10) is generally a large sparse and non sym-
metric matrix. This means that many of elegant algorithms for po-
sitive definite matrices will not work on equation (10). Also, since 
equation (10) will be solved many thousands of times, speed is 
prominent. Since a steady state solution is wanted, it may not be 
necessary to solve (10) very accurately, since only the converged 
solution is of any interest. Therefore, an approximate Jacobian is 
usually applied in the linearization. An approximate Jacobian as-
sociated to a first order upwind discretization is often selected. In 
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the framework of steady flow simulations, the loss in consistency 
between the space-discretized operators and the approximate Jaco-
bian is no problem. On the other hand, it can have as consequence a 
reduction of stability range. By choosing a small enough time step, 
we can note that the matrix in (10) may always be made block 
diagonal dominant.

For simplicity, the present development uses first-order time differen-
cing ( 0ξ =  ) and a two time level space-discretized term ( 0)R ϕ =   

1
n

n nRM U R
t U

θ
  ∂

+ ∆ = −  ∆ ∂   
 (11)

If 1θ = , the scheme is the backward Euler method. For later discus-
sion, we write

nA U Rδ = −  (12)

with
nRA M t

U
θ

 ∂ = + ∆  ∂   
 (13)

and
nUU
t

δ ∆
=

∆
 (14)

A is a block-diagonal matrix of 5x5 blocks for tridimensional Euler 
equations for instance. In practice, the most usual simplifications of 
the implicit operator are diagonalization of all or part of the blocks of 
the implicit matrix or factorization (ADI or LU methods).

Diagonalization consists in transforming, wholly or partly, the blocks 
of the Jacobian matrices occurring in the implicit phase into diagonal 
matrices. It is generally associated with a factorization.

Approximate factorization methods

The purpose of the techniques of approximate factorization is to 
simplify the inversion of the matrix system. Indeed, the matrix 
system cannot be tridiagonal anymore when implicit schemes are 
applied to multidimensional problems. The factorizations include 
alternating (ADI) implicit, Lower-Upper (LU) and line relaxation 
schemes.

The ADI alternate direction technique consists in substituting for the 
implicit operator a factorized operator along the direction of the grid 
[17],[18],[2], [4]. Due to the difference between the original matrix 
and the resulting matrix, upon remultiplication, this procedure intro-
duces errors that can cause a reduction in convergence speed. A 
modified approximate factorization (MAF) procedure, also called dia-
gonally dominant alternate direction implicit (DDADI), that can regain 
a part of the convergence rate loss caused by the standard AF is 
sometimes proposed.

Such techniques are no longer valid for unstructured grids so that 
the system has to be solved by one of the two large families of 
methods available for the resolution of the linear algebraic system 
(4): the direct and the iterative methods. Direct methods are prohibi-
tive in terms of memory requirements and in practice iterative must 
be considered.

Iterative methods

A very large number of iterative methods are available in the literature. 
A presentation of the two main methods implemented in elsA (LU 
Relaxation) or Cedre (GMRES resolution) is described here.

GMRES resolution

Iterative methods aim at building a sequence of iterates 0
nU Rδ = − ,  

1Uδ , Uυδ  such as 1
0U A Uυδ δ−→  when υ →∞ .

GMRES is a nonlinear Krylov method, i.e. it builds a sequence of 
iterates Uυδ  belonging to the Krylov subspace 

{ }1
0 0 0, , ,K span U A U A Uυ

υ δ δ δ−=   (15)

More precisely, GMRES finds U Kυ υδ ∈  so as to minimize the Eucli-
dian norm of the residual 0r A U Uυ υδ δ= − :
	 •	as	the	dimension	of	 Kυ  cannot be larger than the order m of  
A , 0rυ =  when mυ = : in exact arithmetics, the method would 

converge in a finite (though very large !) number of iterates ;
	 •	as	 the	dimension	of	 Kυ  grows with υ , the sequence of re-
siduals rυ  is necessarily decreasing, and no residuals oscillation is 
possible. The minimum principle underlying the method is thus a very 
sound basis for iterations, which distinguishes GMRES from other 
Krylov methods.

GMRES is very efficient in terms of CPU time in that it needs only 
one matrix-vector product per iterate. Of course, computational effort 
and storage needs increase with the dimension of the Krylov space, 
which means that it is generally not advisable to use this method with 
a large Krylov space ( 100υ ≥  for instance). Nevertheless, the res-
tarted version of GMRES puts an end to the orthogonalization process 
at a given number resυ  of iterates and Krylov vectors, then resumes 
iterations with a new sequence of resυ  of iterates and Krylov vectors 
etc. Restarted GMRES thus has a storage requirement of resυ  Krylov 
vectors only although at the price of slower convergence.

GMRES is generally applied to a preconditioned system equivalent to 
the original one. For instance, left preconditioning amounts to multi-
plying (...) by a matrix 1B−  such that 1B A−  is in some sense closer 
to the unit matrix. In Cedre, B  is chosen as the block-diagonal part 
of A ; although very simple, this preconditioning has the advantage 
of solving exactly the local part of the implicit system, for instance 
the contribution of the sources associated with chemical reactions 
or turbulence.

GMRES with block-diagonal preconditioning turns out very efficient 
for solving implicit systems from various solvers (multispecies reac-
tive fluid flow, conduction in solids etc). The convergence mechanism 
of the nested iterative process including time marching and internal 
GMRES iterates was carefully studied in a PhD thesis [20] :
	 •	at	every	time	step,	a	few	tens	of	iterations	allow	a	moderate

 reduction of rυ  typically, 
0

~ 0.1
r
r
υ  to 0.001 for 20υ =  at very large

time step t∆ . Of course, convergence is much faster for relatively 
small time steps;
	 •	spectral	analysis	of	convergence	shows	a	dramatic	reduction	
of high frequency components in the course of GMRES iterates. Even 
though rυ  does not converge to very low values, GMRES practically 
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kills all high frequencies in rυ , which is sufficient to preserve the 
stability of implicit time iterates nU . This distinguishes GMRES from 
relaxation methods like Jacobi or Gauss-Seidel, for which the reduc-
tion rate tends to be the same for all frequencies: for these methods, 
a huge number of iterates may be necessary to preserve stability at 
large time steps, specially in presence of dissipative fluxes.

On the other hand, GMRES does have limitations which must be taken 
into account:
	 •	the	nonlinear	iterates	depend	on	a	small	number	of	global	sen-
sors (scalar products and norms, in particular rυ ) for a very large 
number of degrees of freedom, which means that residuals in some 
regions and for some components of U  may not be properly ta-
ken into account. For physical soundness, the Euclidian norm in the 

Uδ  space must of course use dimensionless components; in some 
cases, the choice of scaling may have a significant effect on the qua-
lity of the solution. For instance in Reynolds Averaged Navier-Stokes 
simulations, improper scaling can lead to a poor solution;
	 •	GMRES	works	well	as	 long	as	numerical	 fluxes	and	sources	
are sensible, but convergence can be very awkward otherwise. In a 
low Mach number flow for instance, using a classical compressible 
numerical flux formula results in a very poor GMRES resolution, whe-
reas a low-Mach number flux ensures efficient iterations;
	 •	 In	 case	 of	 preconditioning,	 time	 conservativity	 is	 not	 built-in	
and is only approximate.
GMRES has been used in Cedre in various contexts:
	 •	its	primary	use	is	for	finding	steady	asymptotic	states	in	Rey-
nolds Averaged Navier-Stokes or conductive heat transfer simula-
tions…
	 •	...	but	it	has	also	been	used	as	the	linear	solver	for	time-depen-
dant simulation with Runge-Kutta type implicit schemes [3].

LU relaxation

After trying several relaxation methods in the context of the elsA solver, 
the LU relaxation is often used to invert the large matrices. The matrix 
of the implicit stage is then split into its block diagonal ( D ), block 
lower (L) and block upper (U) submatrices so that A L D U= + + . 
Each block of D is associated with its own cell. The implicit LU re-
laxation approximate factorization can be implemented for 3D hybrid 
structured or unstructured grid. 

The resolution of the implicit operator is based on an approximation of 
the exact matrix ( )+ +L D U  by ( ) ( )−+ +1L D D U D . The system 
is approximated by a method of relaxation with forward and backward 
sweeps through the domain. The method sweeps through the mesh 
from the lower left corner to the right upper corner during the forward 
sweep. In order to avoid a bias in the iteration scheme and some er-
ror accumulations, alternating sweeps in both direction is used. The 
backward sweep starts at the end-point of the first step. Each relaxa-
tion cycle writes in the form of two stages:

( ) ( 1/2) ( )p pU U++ ∆ = − − ∆nL D R U  (16)

( ) ( 1) ( 1/2)p pU U+ ++ ∆ = − − ∆nU D R L  (17)

where [ ]max0,p p∈  and indicates the number of the relaxation cycle.

These two sweeps are repeated several times and 
max( 1)1

max,pn nU U U p++ = + ,   corresponding to the maximum number 
of the relaxation cycle. The choice of the number of relaxation cycles 

must lead to a satisfactory speed of convergence, and a weak value 
such as two ( max 1p = ) can prove to be a good compromise. When 
this number tends towards +∞ , the method is convergent for an 
unfactored matrix with a strictly dominant diagonal and this whatever 
the initial vector.

In the case of an unstructured grid, a grid reordering algorithm is 
necessary for efficiency of the LU relaxation method. For structu-
red grids, the LU relaxation sweeps are usually performed by using 
hyper planes tei j k C+ + = . The main interest of these sweeps by 
hyper planes is to order the matrix in lower and upper triangular 
matrices.

Forward sweep updates point ( ), ,i j k  using already updated values 
at ( )1, ,i j k− , ( ), 1,i j k− , ( ), , 1i j k −  while backward sweep uses 
( )1, ,i j k+ , ( ), 1,i j k+  and ( ), , 1i j k + . However, this procedure 
is particularly well adapted to structured grids and does not extend 
easily to unstructured grids. In order to get a similar LU relaxation 
algorithm for unstructured grids, a special grid re-ordering procedure 
is required. This re-ordering procecedure was proposed by Soetrisno, 
Imlay and Roberts in [21]. 

For unstructured grid, the previous reordering of cells allows a clear 
definition of the lower and upper matrices L  and U  and the pro-
posed algorithm can be applied.

Multigrid method

The multigrid method using a sequence of fine to coarse grids, thus 
denoted H-multigrid, has been extensively used for practical 3D tur-
bulent flow configurations for many years in block-structured finite 
volume codes in the CFD community.

This part presents convergence acceleration techniques based on 
multigrid methods, which have been used at Onera for many years 
for block-structured meshes. The first developments for the solution 
of Euler and Navier-Stokes system have been coupled with Lax-Wen-
droff type schemes [8],[9] based on the multigrid method proposed 
by Ni [16]. Then cell centered Jameson type schemes were used for 
complex configurations typical of industrial-type problems, and new 
multigrid methods proposed by Jameson [12] were implemented at 
Onera [7] and especially in the elsA software.

The time integration of this system of ordinary differential equations is 
carried out using multi-stage Runge-Kutta scheme (the Backward Eu-
ler scheme corresponds to a one-step scheme). To enhance conver-
gence to steady state, local time stepping as well as implicit residual 
smoothing is used. In general classical iterative approaches are well 
adapted for rapidly damping high frequency error components on a 
given grid. The remaining errors, associated with the smoother low 
frequency error components, are responsible for the slow conver-
gence. These low frequency error components on the fine grid appear 
as higher frequencies on the coarser grid. Thus, to enhance faster 
convergence of the solution to steady state on the fine grid, the mul-
tigrid idea is to use the coarser grids to smooth the fine grid low fre-
quency errors on the coarse grids.

Multigrid : Description of the FAS algorithm

The multigrid technique uses a sequence of successively coarser 
grids to efficiently damp the perturbations. Denoting the grid level by 
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a subscript, a sequence of grids 1h , …, mh , ..., Mh  are then defined, 
where 1h  denotes the finest grid and Mh  represents the coarsest grid.

The multigrid strategy employed is the Full Approximation Storage 
(FAS) scheme in conjunction with Runge-Kutta time stepping pro-
posed by Jameson. This strategy is used to improve the convergence 
rate of a multi-block solver for the solution of Euler and Reynolds-
Averaged Navier-Stokes equations. The Jameson’s FAS algorithm for 
a simple V-Cycle can then be summarised as follows:

	 •	Compute	the	residual	
1hR  and start with a q-stage Runge-Kutta 

time stepping to update the solution on the finest level 1h .

The following steps are repeated right up to the coarsest level m = 2, 
..., M which corresponds to the Restriction step :

	 •	Recompute	the	residual	 ( )1 1m mh hR u
− −

 on the previous level and 
calculate the modified residual to be transferred from grid level 1mh −  
to the level mh :

( )1 1 1 1

(*)
m m m mh h h hR R u P
− − − −
= +  (18)

where 
1mhP
−

 is the added forcing function defined below with 
1hP  on 

the finest level.

	 •	Transfer	the	solution	and	residual	vectors	from	the	previous	grid			
1mh − to the next coarser grid mh  using respectively the fine to coarse 

transfer operators 
1

m

m

h
hT

−
 and 

1
ˆ m

m

h
hT

−
 :

1 1

1 1

(*)ˆ

m

m m m

m

m m m

h
h h h

h
h h h

u T u

R T R

− −

− −

=

=
 (19)

	 •	Compute	the	forcing	function	for	the	residuals	on	the	grid	level	
mh  which is the difference between aggregated residuals transferred 

from grid 1mh −  and the residuals recalculated on mh :

( )m m m mh h h hP R R u= −  (20)

where ( )m mh hR u  is the residual vector computed on the grid level   
mh using the transferred solution vector 

mhu  from the previous grid 
level 1mh − .

	 •	Start	Runge-Kutta	time	stepping	on	the	coarse	level	 mh  using 
the following reformulated version, to take into account the forcing 
function as well as to include sub-iterations if necessary, coupled 
with an implicit smoothing technique (IRS or LU):

( )

(0) ( )

(1) (0)
1

(1) (1)

(1) (0) (1)

m m m

m

m m m m

m

m m m

m m m

q
h h h

h
h h h h

h

h h h

h h h

u u or u

t
u R u P

u u

u u u

α

 =


∆  ∆ = +  Ω
Θ ∆ = ∆


= + ∆










 (21)

( )( ) ( 1)

( ) ( )

( ) (0) ( )

m

m m m m

m

m m m

m m m

hq q
h q h h h

h

q q
h h h

q q
h h h

t
u R u P

u u

u u u

α −






∆  ∆ = +  Ω
Θ ∆ = ∆
 = + ∆







 (21)

Note that upon convergence, when the residual on the finest level 
goes to zero, the term  ( )(0)

m m mh h hR u P+  in the above equation which

can be rewritten as ( ) ( )(0)
m m m m mh h h h hR u R R u + −   goes as well to

zero. Thus, no correction is computed on the coarser levels and dri-
ven back to the finest level.

	 •	Updated	solution	on	coarse	grid	 mh  :

( )
m m

q
h hu u=  (22)

The accumulated corrections from each coarser grid are then suc-
cessively passed back to finer levels by interpolation ( ), ,2m M=  . 
This represents the prolongation step: Transfer the correction from 
the grid level mh  to the next finer one 1mh − .

•	Transfer	the	correction	from	the	grid	level	 mh  to the next finer one 
1mh − :

( )1

1 1

( ) ( ) ( )m

m m m m m M M

h
h h h h h h hu u I u u u u−

− −

+ + += + − ≡avec  (23)

where 1m

m

h
hI −  is the coarse to fine grid prolongation or interpolation 

operator from grid mh  to the next finer one 1mh −  with ( )
M M

new
h hu u≡  on 

the coarsest grid.

The implemented strategies include V and W cycles as well as options 
for full multigrid (FMG) versions. In the present multigrid approach, 
only full coarsening algorithms are employed. Thus, a sequence of 
coarser grids is extracted from the initial given fine grid by deleting 
every other grid line in each coordinate direction.

Further, the boundary conditions on the coarse grids are treated in the 
same way as in the fine grid.

Special attention is given to the intergrid transfer operators in the 
cell-centered formulations in which the variables are located at cell 
centers. Thus, the transferred variable locations change from one grid 
to another, which is not the case in a cell vertex or node centered 
formulation. For the fine to coarse operators, the standard approach 
is used. The transfer of flow variables conserves mass, momentum 
and energy by the rule:

1 1

1

m m

m

m

h h
h

h

u
u − −

−

Ω
=

Ω
∑
∑

 (24)

and the residual transferred to grid mh  is the sum of the residuals 
computed on the eight cells of the fine grid :

1

(*)
m mh hR R

−
= ∑  (25)
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where the summations range over the cells on the fine grid compo-
sing each cell on the coarser grid. 

For the coarse to fine operator, in order to damp the high frequency 
errors, an efficient prolongation operator possessing inherent smoo-
thing properties and well adapted for multiblock computational mesh 
is introduced. The basic idea is to project the cell centered corrections  
( )( )

m m

new
h hu u− , denoted here by the symbol Φ , in a conservative 

manner to the nodes of the coarse grid by the relation:

{ }

{ }

( ) ( )

/( )
( )

/

m m

m

m

Cell Cell
h h

Cell Node CellNode
h Cell

h
Cell Node Cell

∈

∈

Ω Φ
Φ =

Ω

∑
∑

 (26)

where the numbering of the nodes are given as in figure 1.

Figure 1 - Coarse to fine inter-grid operator

This conservative smoothing is found to be quite efficient in all our ap-
plications. For multi-block computational mesh, the exact interfaces 
are also taken into account in this cell-to-node projection process. 
For the four finer (in 2D) cells, which are then exactly included in the 
coarser grid cell, a volume weighted interpolation is used to compute 
the cell centered corrections:
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 (27)

where Ω , the volume of the coarse grid cell mh , is the summation of 
the included fine grid cell volumes

The interpolation coefficients could be based on linear interpolation, 
inverse distance interpolation or inverse volume interpolation to get 
better accuracy, but not necessarily better smoothing properties.

For inviscid computations, this leads to an efficient procedure and 
good convergence properties are obtained for a wide range of 3D 
applications. Further, to treat complex multi-block configurations with 
limited number of cells in one direction, the idea of using linear dissi-
pation terms on the coarse grids is also implemented. This consists in 
using a simple constant coefficient second order dissipation term on 
the coarser grids instead of the nonlinear artificial dissipation model.

Strategy for turbulent flows

In the case of the RANS equations, the approach adopted is to com-
pute the viscous terms on the coarser grids too. Thus, their influences 
are also taken into account in the forcing functions on the coarser 

grids. Different turbulence models are available in the solver, ranging 
from algebraic models to two equation models. These models are 
used to compute the turbulent quantities only on the finest grid level.
On the coarser grids, they are obtained by interpolating the values 
from the finest level. This leads to a very direct approach with alge-
braic models, while with one or two equation models, the corres-
ponding turbulence model equations are solved separately decoupled 
from the flow equations. In the solver, one Runge-Kutta iteration is 
carried out to update the turbulent quantities on the fine grid. Thus, 
different new turbulence models can easily be included in the present 
environment.

Strategy for multigrid cycles

In order to ensure robustness in V cycles without multigrid on tur-
bulent quantities, sub-iterations are performed on the corresponding 
equations (let say 2 subiterations on k−w system for a V cycle with 2 
or 3 grids). Concerning the present multigrid DG implementation, we 
have used a P1 approximation on the fine grid and a P0 approximation 
on the coarse grid, leading to small overcost when using multigrid 
(20% additional cost per iteration).

Onera M6 wing multigrid computations 

Figure 2 : Onera M6 wing transonic computation – Convergence evolution 
a) L2 norm of residual – b) lift coefficient

The Onera M6 wing is a basic 3D test case widely presented in the 
literature in order to validate numerical methods and turbulence mo-
dels. The flow field is computed here by the solution of the RANS 
equation with the Wilcox k ω−  model at a free stream Mach number 
of 0.836, an angle of attack of 6.06° and a free stream Reynolds 
number of  11.7 106. The C-O mesh used for the computations is 
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composed of 193x49x65 points, corresponding to 1y+ ≈  almost 
everywhere on the wing.

Figure 2 illustrates convergence histories of computation performed 
with the implicit LU method respectively without multigrid (1 grid), 
and with multigrid with different number of coarse grids (2, 3 and 4 
grids). For that test case we have a ratio gain of 5 for a 4-grid com-
putation, knowing than a multigrid cycle is about 25% to 35% more 
expensive than a single iteration (monogrid cycle).

Time integration for unsteady flow simulations

The majority of flow fields encountered in engineering applications 
are unsteady. In unsteady applications, some of the most widely used 
methods of the two step family (6) are the explicit method of Adams-
Bashworth ( 1/ 2ϕ = ), and the implicit Crank-Nicholson ( 1/ 2θ = ) and 
Gear methods ( 1θ = , 1/ 2ξ = ). The main drawback of explicit sche-
mes lies in the numerical stability limit on t∆ , but the CPU cost per itera-
tion is low, since no matrices have to be invert. For implicit methods, large 
time steps can be applied. Nevertheless, for unsteady flow problems, 
accuracy requirements tend to restrict the maximum time step.

Dual time stepping 

Unsteady flow can also be computed by a dual time-stepping ap-
proach [13], [14], [15] in which a steady state with respect to the 
dual time is approximately reached at each physical time-step. Cal-
culation between two physical instants leads to the resolution of a 
system of pseudo-unsteady equations in dual time and is carried out 
using convergence acceleration techniques developed within the fra-
mework of the steady problems (multi-grid method, local time step, 
implicit phase with respect to dual time).

In order to use the dual-time stepping method, an additional term is 
introduced in the equation 

( )
1

1 0
n

ndUM R U
dt

+
+  + = 

 
 (28)

where for simplicity of presentation we assume 1θ =

This term corresponds to derivative in dual time of the conservative 
variables. The form of the equation relative to dual time then becomes:

( )
,

, 1ˆ 0
n m

n mdUM R U
dτ

++ =  (29)

with

( ) ( )
, 1

, 1 , 1ˆ
n m

n m n mdUR U M R U
dt

+
+ += +  (30)

Indices m and n are respectively attached to dual time and physical 
time. The sub-iterations in dual time thus relate to the index m. The 
term ( ), 1ˆ n m

KR U +  represents the unsteady residual. With conver-
gence of sub-iterations ( m →∞ ), the first term of equation is null 
and the aerodynamic field satisfies:

( ) ( ), 1ˆ ˆ 0n nR U R U∞ += =  (31)

Thus, the aerodynamic field indeed corresponds to the unsteady so-
lution of the physical problem at the instant ( 1)n t+ ∆ .

In order to speed up the convergence to the pseudo-steady state, 
scheme can be made implicit with respect to τ . Generally, a simple 
first-order space discretization is retained to build the implicit stage. If 
no motion of K is considered, the scheme is written:
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 (32)

with , 1 ,m n m n mU U U+∆ = − .

The time accuracy of the method depends on the temporal discretiza-
tion of the physical time derivative.

Implicitation of Runge-Kutta-Heun methods

Implicit methods can also be of interest in unsteady simulations when 
unresolved time scales which do not participate in the solution can 
none the less destabilize explicit calculations. A classical example is 
low Mach number flows for which we may want to capture unsteady 
advection while acoustics is of no importance. In that case, the ratio 
of the convective velocity scale v to the speed of sound c is the Mach 
number, which tends to zero. For mesh size of order h, the time step 
to resolve advection is ~h/v and is much larger than the maximum 
allowable time step for explicit stability ~h/c.

Gear methods are examples of implicit schemes currently used in 
unsteady applications. Their main drawback is in being multi step 
methods that need several initial conditions … 1U − , 0U  . That is 
why it was decided to develop implicit variants of one step Heun and 
Runge-Kutta methods.

A simple explicit method for the integration of (4) is
( )nM U R Uδ ∗ = −
( ) (1 ) ( )nM U R U R Uδ θ θ∗= − − −  (33)

where
nU UU

t
δ

∗
∗ −
=

∆
, and Uδ  is given by (14).

If 1/ 2θ = , (33) is second order accurate and is known as Heun’s 
method.

Following the model of linearized backward Euler (12), a possible 
candidate for the implicitation of (33) is the three parameter method,

1

n
nRM U R

U
θ δ

  ∂
+ = −  ∂   

2 (1 )n nRM U R R
U

θ θ θ
∗

∗
  ∂

+ ∆ = − − −  ∂   

 (34)

which needs two linear system resolutions per time step. In the same 
way, Runge-Kutta methods with three or four evaluations have implicit 
variants with additional parameters (34) and variants are investigated 
in detail in [3], which studies stability and precision for this large 
class of methods. This work also defines a method for correcting the 
approximation of the Jacobian matrix in the implicit system, and show 
applications to Large Eddy Simulation 
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Acronyms

elsA (Ensemble Logiciel pour la Simulation en Aérodynamique)
CEDRE (Calcul d’Ecoulements Diphasiques Réactifs pour l’Energétique)
GMRES (Generalized Minimal RESidual)
LU (Lower/Upper)
ADI  (Alternating Direction Implicit)
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